Don't worry if this assignment takes longer to complete than the others. It could have been split into two or more assignments, but since it covers a single subject (parsing using a hand-coded predictive recursive-descent parser) it has been kept as one assignment.
(empty is used as the symbol for the empty string.)start -> list eof list -> expr ; list | empty expr -> expr + term { print('+') } | expr - term { print('-') } | term term -> term * factor { print('*') } | term / factor { print('/') } | term div factor { print('DIV') } | term mod factor { print('MOD') } | factor factor -> ( expr ) | id { print(id.lexeme) } | num { print(num.value) }
The grammar is left-recursive. We use the standard method (see the lecture notes from lecture 3) to eliminate left-recursion. We get this syntax-directed translation scheme (ASU-86 Fig 2.38):
start -> list eof list -> expr ; list | empty expr -> term moreterms moreterms -> + term { print('+') } moreterms | - term { print('-') } moreterms | empty term -> factor morefactors morefactors -> * factor { print('*') } morefactors | / factor { print('/') } morefactors | div factor { print('DIV') } morefactors | mod factor { print('MOD') } morefactors | empty factor -> ( expr ) | id { print(id.lexeme) } | num { print(num.value) }
In the program in section 2.9 of the course book (ASU-86), the parser in parser.c has been hand-optimized to eliminate tail recursion, using the methods described on page 52-53 in ASU-86. For example, the non-terminals term and morefactors are handled by the function term, which contains a while loop. Modern C compilers will perform these optimizations automatically. Since they are unnecessary and make the program harder to understand, they have been removed in the version of the program available on these web pages.
The postfix representation of an assignment variable = value is variable value =. For example, the postfix representation of x = 17 is x 17 =, and the postfix representation of fum = 10 * 3 + foo is fum 10 3 * foo + =.
To change the grammar from above to one that understands assignments, we first add a production for a new non-terminal called assignment. We also change the definition of list from a list of expressions to a list of assignments. The grammar now starts like this:
(And the rest is the same as above.)start -> list eof list -> assignment ; list | empty assignment -> id = expr expr -> term moreterms ...
Assume that we want to handle both assignments and expressions. Write a grammar for that.
Would it be possible to write a predictive recursive-descent parser for your grammar? (Hints: Is it ambiguous? Is it left-recursive? Are FIRST sets disjoint?)
Also print the assigned value after each assignment.
Just use integer operations in your calculations. The result of 10 / 3 should be 3, and the result of 1 / 3 should be 0.
Another hint: The infix expression x = x + 1 has the postfix representation x x 1 + =, but those two xes are different! The second x refers to the value of the variable, as usual in an expression, but the first x refers to the variable itself. So what should be pushed onto the stack for those xes?
Examples of input and output:
Input | Postfix | Value |
---|---|---|
2 ^ 3 | 2 3 ^ | 8 |
2 ^ 3 * 4 | 2 3 ^ 4 * | 32 |
2 * 3 ^ 4 | 2 3 4 ^ * | 162 |
2 ^ 3 ^ 4 | 2 3 ^ 4 ^ | 4096 |
For the report, include and explain any changes you made to the grammar and to the program.
Några tips:
Man kan tänka sig att upphöjt-operatorn bildar en ny nivå av prioriteter. I den ursprungliga grammatiken kan man tänka sig att det finns uttryck som består av termer som i sin tur består av faktorer. Exempelvis uttrycket 2*3+4*(5+6) består av termerna 2*3 och 4*(5+6), och sen består termen 2*3 av faktorerna 2 och 3, och termen 4*(5+6) består av faktorerna 4 och (5*6). Nu kan man tänka sig att uttryck består av termer som i sin tur består av faktorer, men sen består faktorerna av exponentargument (eller vad man nu ska kalla dem). Exempelvis uttrycket 2*3+4^5*6^(7+8) består av termerna 2*3 och 4^5*6^(7+8), och sen består termen 2*3 precis som förut av faktorerna 2 och 3, men den andra termen 4^5*6^(7+8) består av faktorerna 4^5 och 6^(7+8). Den första av de faktorerna, 4^5, består av exponentargumenten 4 och 5, och den andra faktorn, 6^(7+8), består av exponentargumenten 6 och (7+8). Jag brukar tycka att det blir lättare att se om man ritar rutor runt uttrycken, termerna, faktorerna och exponentargumenten. |
Even if you don't send a report by e-mail, we advise that you write down your answers, to facilitate communication and for your own later use.