Exam

Compilers and Interpreters

for Dataingenjörsprogrammet, and others

Saturday October 30, 2010
Exam for:
DT3004 Datateknik C, Kompilatorer och interpretatorer, provkod 0100

\rightarrow This exam is also available in a Swedish version.

Aids:	No aids.
Score	Maximum score is 32.
requirements:	To pass (3 or G), at least 16 points are required.
Results:	Announced on the course website or by e-mail by Saturday November 20, 2010.
Return of the After the result has been announced, exams can be collected from exams: the university's central "tentamensutlämning". Examiner: Thomas Padron-McCarthy	

- Write clearly. Solutions that can not be read can obviously not give any points. Unclear and ambiguous wording will be misinterpreted.
- Enter the personal exam code on each sheet submitted. Do not write your name
on the sheets.
- Write only on one side of the paper. Do not use red letters.
- Assumptions beyond those in the given problems must be stated.
- You are allowed to explain your solutions. Even an incorrect answer may give some points, if the key ideas were right.

Task 1: Phases (3 p)

When we compile the following C program, the compiler gives the italicized error and warning messages:

```
#include <stdio.h>
int main(void) {
    int a;
    printf("Hi!\n ); error: missing terminating " character
    printf("Give a number: ");
    scanf("%d", &a ; error: expected ')' before ';' token
    printf("The number was: %d\n", a);
    return "Charles"; warning: return makes integer from pointer without a cast
}
```

A compiler's work is usually divided into several phases. In which phases are these errors and warnings detected?

Task 2: Scanning and Regular Expression (5 p)

a) (2p) Write regular expressions for the following:

- a year with four digits (that is, from year 1000 to year 9999)
- clothes sizes (which can be XS, S, M, L and XL)
b) (2p) Write a regular expression for the Swedish personal identity number (for example 631211-1658). Your expression should match all valid such numbers. It is difficult to write a regular expression that does not also match certain incorrect numbers, so your solution is allowed to do that. But state at least one check that is not made by your regular expression.
c) (1p) What is the difference between a token and a lexeme?

Task 3: Grammars (10 p)

Here are three things that are problematic in a grammar:
a) left recursion
b) $\operatorname{FIRST}()$ conflicts
c) ambiguity

For each of these problems, provide an example of a grammar that exhibits the problem. Also explain, for each of the grammars, how the problem manifests itself in practice. (That is: what is it that does not work, because of the problem?) Also explain how to solve the problem.

Task 4: Intermediate Code (5 p)

```
x = 1;
y = 2;
z = 3;
while (y == 2) {
    if (z > 4) {
        y = y - 1 - 1;
    }
    else {
        z = z + y * z + z;
        t = t + 2;
    }
}
```

Translate the above program section to two of the following three types of intermediate code:
a) an abstract syntax tree (by drawing the tree!)
b) postfix code for a stack machine
c) three-address code

Note: There are three sub-tasks in the task above. Select and answer (at most) two of them. (If you answer all three, the one with the most points will be discarded.)

Task 5: Some Terms(9 p)

Briefly explain what the following terms from compiler technology mean:
a) target language
b) target program
c) front end
d) Yacc
e) symbol table
f) shift-reduce conflict
g) deterministic finite state machine
h) reserved word (or "keyword")
i) call sequence

