1of5

Orebro University
School of Science and Technology
Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se)

Exam

Compilers and Interpreters

for Dataingenjorsprogrammet, and others

Thursday January 2, 2020

Exam for:

DT125G Kompilatorer och interpretatorer, provkod A001

Aids: No aids.

Score requirements: Maximum score is 43.
To pass, at least 8 points are required on task 1,
and at least 23 points in total.

Results: Announced on the course website or by e-mail no
later than January 23, 2020.

Return of the exams: Electronically through the student portal
"Studenttjanster".

Examiner and teacher

Thomas Padron-McCarthy, phone 070-73 47 013.
on call:

e Write clearly. Solutions that can not be read can of course not give any
points. Unclear and ambiguous wording will be misinterpreted.

e Write the personal exam code on each sheet submitted. Do not write
your name on the sheets.

e Write on only one side of the paper. Do not use a red pen.

e Assumptions beyond those in the given problems must be stated.

e You are allowed to explain your solutions. Even an incorrect answer may
give some points, if the key ideas were right.

GOOD LUCK!!

Formulas

1. Eliminating left recursion

A left-recursive grammar can be transformed to a grammar that is not left
recursive. Assume that the grammar contains a rule (or, more correctly, two
productions) like this:

A -—>AXx | vy

A is a non-terminal, but x and y are any constructions consisting of terminals
and non-terminals.

The rule is replaced by the following two rules (or, more correctly, three
productions), that describe the same langugage, but are not left recursive:

A -> y R
R —> x R | empty

2. Left factorization

Assume that the grammar contains this rule (two productions):

A -—>xVy | xz

A is a non-terminal, but x, y and z are any constructions consisting of
terminals and non-terminals.

Replace with these three productions:

A -> x R
R-—>vy | z

20of5

30of5

Task 1 (10 p)

A compiler's work is usually divided into a number of phases. Which are those
phases? Explain shortly what each phase does. What is the input and the
output of each phase?

Task 2 (6 p)

Here is a program segment written in a C-like language:

a=1;
b=c¢c-2*d- 3;
while (e * 4 < £ * 5) {
= e + 6;
=f - 7;

H O

}
g =28;

Translate the program segment to two of the following three types of
representations. (Should you answer with all three, the one with the highest
points will be discarded.)

a) an abstract syntax tree (by drawing it)
b) postfix code for a stack machine

c) three-address code

Task 3 (5 p)

Explain the following compiler-related terms.

a) activation record (in Swedish: aktiveringspost)

b) call sequence (Swedish: anropskonventioner)

C) conservative garbage collection (Swedish: konservativ skrapsamling)
d) copy propagation

e) DAG

Task 4 (6 p)

Explain the difference between:

a) structural equivalence and name equivalence

b) static and dynamic (when talking about compilers)

c) an ambiguous grammar (in Swedish: tvetydig grammatik) and a FIRST()
conflict

4 of 5

Scenario for task 5-7

We're working with machine translation between natural languages such as
Swedish and English, and we have made a table with words in different
languages:

Words
Swedish |English|German |Smurf| Cat
bil car Auto smurf |meow
skola school |Schule [smurf |meow
hus house |Haus smurf |meow

We could store the table in a database and use SQL commands, but it is
probably simpler to create a specialized input language for entering words
and for searching. This input language should have three commands:

e new language, to add a new natural language to the system. Example:
new language Norwegian

e add word, to add a new word with a translation to the system. This
command should have the format add word word-1 in /language-1 =
word-2 in language-2. Example:
add word hus in Swedish = Haus in German

e translate, to perform a translation. This command should have the
format translate word from /anguage-1 to language-2. Example:

translate school from English to German

50f5

Task 5 (4 p)

a) (2p) Which terminals are needed to write a grammar for the input language
in the scenario?

b) (2p) Out of these terminals, some will not have fixed lexemes. Write regular
expressions for each such terminal.

Task 6 (4 p)

Write a grammar for the input language. The start symbol should be
command, which represents one single command according scenario above.

Task 7 (8 p)

Write a predictive recursive-descent parser for the input language, in a
language that is at least similar to C, C++, C# or Java. You do not have to
write exactly correct program code, but it should be clear which procedures
exist, how they call each other, and what comparisons with token types are
made. You can assume there is a function called scan, which returns the type
of the next token, and a function called error, which you can call when
something went wrong and which prints an error message and terminates the
program.

