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Aids: No aids.

Score requirements: Maximum score is 36.
To pass, at least 18 points are required.

Results: Announced on the course website or by e-mail by
Monday November 19, 2018.

Return of the exams: Electronically through Studentforum.

Examiner and teacher
on call:

Thomas Padron-McCarthy, phone 070-73 47 013.

Write clearly. Solutions that can not be read can of course not give any
points. Unclear and ambiguous wording will be misinterpreted.
Enter the personal exam code on each sheet submitted. Do not write
your name on the sheets.
Write on only one side of the paper. Do not use a red pen.
Assumptions beyond those in the given problems must be stated.
You are allowed to explain your solutions. Even an incorrect answer may
give some points, if the key ideas were right.

GOOD LUCK!!
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Formulas

1. Eliminating left recursion

A left-recursive grammar can be transformed to a grammar that is not left
recursive. Assume that the grammar contains a rule (or, more correctly, two
productions) like this:

A -> A x | y

A is a non-terminal, but x and y are any constructions consisting of terminals
and non-terminals.

The rule is replaced by the following two rules (or, more correctly, three
productions), that describe the same langugage, but are not left recursive:

A -> y R
R -> x R | empty

2. Left factorization

Assume that the grammar contains this rule (two productions):

A -> x y | x z

A is a non-terminal, but x, y and z are any constructions consisting of
terminals and non-terminals.

Replace with these three productions:

A -> x R
R -> y | z
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Task 1 (10 p)

A compiler's work is usually divided into a number of phases. Which are those
phases? Explain shortly what each phase does. What is the input and the
output of each phase?

Task 2 (8 p)

This is a program segment from a C-like language.

    if (a < b) {
        while (c > d) {
            b = a + 1;
            a = c * (b + c);
            a = a + 1;
            d = c * (b + c);
        }
        b = a + 1;
    }
    c = a + 1;

a) Translate the program segment to either a abstract syntax tree (by drawing
the tree) or postfix code for a stack machine. (Not both!)

b) Translate the program segment to three-address code. Identify the basic
blocks and draw the flow graph. (The flow graph, with the three-address code
in it, is sufficent as answer.)

c) Show an optimization that can be done within one of these basic blocks.
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Scenario for task 3-6

Soon it's Halloween, and the children make a "candy round" where they walk
around to the neighbors and ask "trick or treat". To document their activities
they need a special Halloween language, where a complete input might look
like this:

began candy round;
treat: three candies;
trick: made some ghostly sounds;
treat: one kilo of chocolate;
treat: a carrot;
trick: set fire to the neighbors car;
went home;

The input describes a candy round. It starts with began candy round; and
ends with went home;. In between, there are zero or more notes about trick
or treat. Such a note begins with either trick or treat, a colon (:), one or
more words that indicate what happened, and a semicolon (;).

It should be possible to write the input in free format, such as in most
common programming languages, for example like this:

began candy round ; treat : three candies ; trick
: made some ghostly
sounds ; treat : one kilo of chocolate
; treat
: a carrot ; trick : set fire
to the neighbors car ; went home ;
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Task 3 (3 p)

a) (1p) One of the terminals, that is, types of tokens, that are needed to write
a grammar for the Halloween language is word. That is simply one or more
lower-case letters, a to z. (We only use the English alphabet.) Write a regular
expression that describes what such a word can look like.

b) (2p) Which other terminals, except word, are needed to write a grammar
for the language?

Task 4 (4 p)

Write a grammar for the Halloween language. The start symbol should be
candy_round, which represents a complete input according to the scenario
above.

Task 5 (3 p)

A parse tree (sometimes called a "concrete syntax tree") contains nodes for
all non-terminals. Draw the parse tree for this candy roound, according to your
grammar from the task above:

began candy round;
treat: one chewing gum;
went home;

Task 6 (8 p)

Write a predictive recursive-descent parser for the Halloween language, in a
language that is at least similar to C, C++, C# or Java. You do not have to
write exactly correct program code, but it should be clear which procedures
exist, how they call each other, and what comparisons with token types are
made. You can assume there is a function called scan, which returns the type
of the next token, and a function called error, which you can call when
something went wrong and which prints an error message and terminates the
program.
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