
Mimer JDBC
Driver Guide

September 2007

Mimer JDBC, Driver Guide
© Copyright Mimer Information Technology AB.

The contents of this manual may be printed in limited quantities for use at a Mimer SQL installation site. No parts of the
manual may be reproduced for sale to a third party.
Information in this document is subject to change without notice. All registered names, product names and trademarks of
other companies mentioned in this documentation are used for identification purposes only and are acknowledged as the
property of the respective company. Companies, names and data used in examples herein are fictitious unless otherwise
noted.

Produced and published by Mimer Information Technology AB, Uppsala, Sweden.
P.O. Box 1713,
SE-751 47 Uppsala, Sweden.
Tel +46(0)18-780 92 00.
Fax +46(0)18-780 92 40.

Mimer SQL Web Sites:
http://developer.mimer.com
http://www.mimer.com

http://www.mimer.com
http://developer.mimer.com

Mimer JDBC i
Driver Guide
Contents
Chapter 1 Introduction ... 1

About this Guide ..1
Definitions, Terms and Trademarks ... 1

Available Drivers..2
Requirements ...2
Environment ...3
Differences Between the Drivers..4

About the JDBC Driver for J2ME/CDC (minjdbc3) ... 5
About the JDBC Driver for Midlets (midjdbc3) .. 5

Importing the JDBC Classes... 6
FLOAT and DOUBLE PRECISION... 6
DATE, TIME and TIMESTAMP... 7

Logging...7

Chapter 2 Using the Mimer JDBC Driver .. 9
Loading a Driver...9
Connecting the Traditional Way ...9

Connecting With URL... 10
URL Syntax ... 10

Connecting the J2EE Way...12
Deploying Mimer JDBC in JNDI.. 13
Deploying Mimer JDBC in a Connection Pool .. 13
Deploying Mimer JDBC in Distributed Transaction Environments 13

Mimer JDBC/CDC Optional Package..14
Sony Ericsson CDC Platform .. 14

Error Handling..14
The Class SQLException... 15
The Class SQLWarning ... 15

Viewing Driver Characteristics ...16
The mimcomm JNI library ...16
Java Program Examples ...17

JDBC Application Example.. 17
JDBC Application Example for J2EE.. 18

ii Contents
Using the Driver from Applets... 19
Executing the Java Applet Example... 20

Mimer JDBC Midlet Example.. 22

Chapter 3 Programming With JDBC ... 25
Examples in this Chapter ..25
Transaction Processing...25

JDBC Transactions .. 25
Auto-commit Mode ... 25
Manual-commit Mode... 26
Setting the Transaction Isolation Level .. 27

Executing an SQL Statement ..27
Using a Statement Object ... 27
Using a PreparedStatement Object ... 27
Using a CallableStatement Object ... 28

Batch Update Operations ..28
Enhancing Performance.. 29

Result Set Processing ...30
Scrolling in Result Sets.. 31

Positioning the Cursor .. 31
Result Set Capabilities .. 32
Holdable cursors .. 32

Updating Data ...32
Programming Considerations...33

Interval Data.. 33
Closing Objects .. 33
Increasing Performance .. 33

Chapter A Change History... 35
New Functions..35

New Functions in 3.18, 2.18 and 1.18... 35
New Functions in 3.17, 2.17 and 1.17... 35
New Functions in 3.16, 2.16 and 1.16... 35
New Functions in 3.15 ... 35
New Functions in 2.9 ... 35
New Functions in 2.8 ... 36
New Functions in 2.7 ... 36
New Functions in 2.5 ... 36
New Functions in 2.4 ... 36
New Functions in 2.3 ... 36
New Functions in 2.0 ... 36
New Functions in 1.9 ... 36
New Functions in 1.7 ... 37
New Functions in 1.2 ... 37

Changed Functions..37
Changed Functions in 3.16, 2.16 and 1.16... 37
Changed Functions in 2.15 and 1.15... 37

Mimer JDBC iii
Driver Guide
Changed Functions in 2.14 and 1.14 ... 38
Changes in 2.14 and 1.14.. 38
Changes in 2.9 .. 39
Changes in 2.7 .. 39
Changes in 2.2 .. 39
Changes in 2.1 .. 39
Changes in 1.3 .. 39
Changes in 1.2 .. 39

Corrected Problems...40
Correction in 3.20, 2.20 and 1.20 ... 40
Correction in 3.19, 2.19 and 1.19 ... 40
Corrections in 3.18, 2.18 and 1.18 ... 40
Correction in 3.16, 2.16 and 1.16 ... 41
Corrections in 2.14.. 41
Corrections in 2.14 and 1.14 ... 41
Corrections in 2.13 and 1.13 ... 42
Corrections in 2.12 and 1.12 ... 42
Corrections in 2.11 and 1.11 ... 43
Corrections in 2.10 and 1.10 ... 43
Corrections in 2.9.. 44
Corrections in 2.7.. 44
Corrections in 2.6.. 44
Corrections in 2.2.. 44
Corrections in 1.9.. 45
Corrections in 1.7.. 45

Known Restrictions ...45
Known Problems..45

Update Counts on Errors in Batched Statements... 46

 Index ... 47

iv Contents

Mimer JDBC 1
Driver Guide
Chapter 1

Introduction
Mimer JDBC Drivers provide access to Mimer SQL databases from Java applications and
applets. The drivers are type 4 drivers, which means that they are written entirely in Java.
As they are written in Java, they can be downloaded in applets.

Mimer JDBC Drivers can also be used on all platforms that support Java Virtual Machine
(JVM) and so provide a very high degree of portability.

About this Guide
The guide is intended for Java application developers working with Mimer SQL. It covers
all available Mimer JDBC drivers.

The guide describes the usage of SQL in Java applications, and provides, together with
the Mimer SQL Reference Manual, the complete reference material for Mimer SQL.

To read more about JDBC and JVM, visit http://java.sun.com/products/jdbc/index.html.

The JDBC API specification implemented by this driver (packages java.sql and
javax.sql) is found at
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
and http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/package-summary.html.

Definitions, Terms and Trademarks
API Application Programming Interface

CDC Connected Device Configuration

CLDC Connected Limited Device Configuration

EJB Enterprise Java Beans

J2EE Java 2 platform Enterprise Edition

J2ME Java 2 platform Micro Edition

J2SE Java 2 platform Standard Edition

JCP Java Community Process

JDBC The Java database API

JDK Java Development Kit

JNDI Java Naming and Directory Interface

http://java.sun.com/products/jdbc/index.html
http://java.sun.com/j2se/1.4.2/docs/api/java/sql/package-summary.html
http://java.sun.com/j2se/1.4.2/docs/api/javax/sql/package-summary.html

2 Chapter 1 Introduction
Available Drivers
All other trademarks are the property of their respective holders.

Available Drivers
At the moment, the following Mimer JDBC drivers are available:

• mimjdbc3.jar supports the JDBC 3 specification and is J2EE compliant. This is
currently the main JDBC driver, which should be used in most situations. This
driver requires a Java 1.4 runtime or later.

• mimjdbc1.jar and mimjdbc2.jar supports the JDBC 1.2 and JDBC 2
specifications respectively. These drivers support the same server features as
mimjdbc3.jar, but are supposed to be used on platforms and in environments
where modern Java runtime environments are not supported. mimjdbc2.jar is J2EE
compliant.

• minjdbc3.jar supports the JDBC Optional Package for CDC/Foundation Profile
specification and is J2ME compliant. This driver supports a subset of the JDBC 3
specification and is aimed at devices with limited memory resources. See further
down in this document for specifics on what is supported and not.

• midjdbc2.jar implements a subset of the functionality provided by the minjdbc3
driver. It is J2ME compliant and is supposed to be used in environments supporting
the CLDC/Mobile Information Device Profile specification. See further down in
this document for specifics on what is supported and not.

Requirements

JNI Java Native Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

KVM K Virtual Machine, a compact portable JVM, intended for small, resource
constrained devices

MIDP Mobile Interface Device Profile

OCC Optimistic Concurrency Control

PSM Persistent Stored Modules, the term used by ISO/ANSI for stored
procedures

SQL Structured Query Language

URL Uniform Resource Locator

Driver Mimer SQL Product Java Runtime

mimjdbc3.jar Mimer SQL 8.2 or later JRE 1.4 or later

mimjdbc2.jar Mimer SQL 8.2 or later JRE 1.2 or later

mimjdbc1.jar Mimer SQL 8.2 or later JRE 1.1.8 or later

Mimer JDBC 3
Driver Guide
Environment
Mimer JDBC has a complete range of functionality and support for the smallest devices
to the high-end systems and application servers. In the picture below the various Java
environments are described and coupled with computer environments and Mimer JDBC
drivers:

In addition, the mimjdbc1 and mimjdbc2 drivers are available for older environments
(see Available Drivers on page 2).

minjdbc3.jar Mimer SQL 8.2 or later J2ME CDC/Foundation Profile

midjdbc2.jar Mimer SQL 8.2 or later J2ME CLDC 1.0.4/MID Profile 2.0 or
CLDC 1.0/MID Profile 1.0 with extra
support for the socket protocol within
the Generic Connection Framework

Driver Mimer SQL Product Java Runtime

4 Chapter 1 Introduction
Differences Between the Drivers
Differences Between the Drivers
In most cases the mimjdbc3 driver should be used. The mimjdbc1 and mimjdbc2
drivers should be used when only older Java runtime environments are supported. The
minjdbc3 and midjdbc2 drivers are mainly for smaller and resource constrained
environments.

The following table lists differences between the drivers:

Description mimjdbc1 mimjdbc2 mimjdbc3 minjdbc3 midjdbc2

Array Fetches Yes Yes Yes Yes Yes

Batch Operations No Yes Yes Yes Yes

CallableStatements Yes Yes Yes Yes Yes

DatabaseMetaData
Support

Yes Yes Yes Yes Yes

DataSource No Yes Yes Yes Yes

Distributed
Transactions (XA)

No Yes Yes No No

Driver identification
support

Yes Yes Yes No No

Driver-class Support Yes Yes Yes No No

Holdable cursors No No Yes Yes No

java.sql.Blob,
java.sql.Clob

No Yes Yes Yes Yes

JavaBean
configuration

No Yes Yes Yes No

May be stored in
connection pools

No Yes Yes No No

May be stored in
JNDI

No Yes Yes No No

National character
Support

Yes Yes Yes Yes Yes

Native SQL
expansions

Yes Yes Yes Yes Yes

Parameter metadata No No Yes Yes No

Scrollable
ResultSets

No Yes Yes Yes Yes

Set FetchSize No Yes Yes Yes Yes

Mimer JDBC 5
Driver Guide
Note: A requirement for functionality support regarding to the table above is that the
database server version used is supporting the functionality.

The default fetch size for the mimjdbc drivers is about 64 kB. In the minjdbc and midjdbc
drivers the buffer size is 10 kB. This buffer size can be manipulated using the
.setFetchSize method.

About the JDBC Driver for J2ME/CDC (minjdbc3)
The Mimer JDBC driver for J2ME/CDC uses less memory resources than the regular
drivers. The code size itself has been reduced by removing features not included in the
JDBC for J2ME/CDC specification. Furthermore the J2ME-driver allocates smaller
buffers for network packets and internal data.

The Mimer JDBC driver for J2ME/CDC is primarily intended to be used on a device with
limited memory resources. It can connect to any type of Mimer SQL server.

About the JDBC Driver for Midlets (midjdbc3)
The Mimer MIDP driver should be used in environments supporting the CLDC/MID
Profile specification. It is a strict subset of the regular JDBC for CDC configurations API.
Also applications developed with Mimer MIDP will run with little change in a regular
JDBC environment and vice versa. Programming skills obtained using regular JDBC
programming may be applied to programming within the MIDP environment as well.

The following features are omitted in the Mimer JDBC for MIDP:

• All methods requiring floating point data types (such as
ResultSet.getDouble). See below on floats, doubles and BigDecimal’s for
guidelines on handling these cases.

• All methods requiring a java.sql.Date, java.sql.Time and
java.sql.Timestamp data type. When working with SQL date, time and
timestamp data, please consider using ResultSet.getString,
PreparedStatement.setString and other string getter and setter methods
instead.

• The MIDP driver has no finalize() methods. This means that it is even more
important for applications to explicitly close database objects when done with
them.

• Since the java.math library is omitted from MIDP, no BigDecimal’s may be
used. Please consider using the appropriate java.lang.String getter or setter
method.

• There is no java.sql interface. Programs interact directly against the
com.mimer.jdbc classes instead. See below for a list of corresponding classes.
Basically, instead of importing java.sql.*, you should import com.mimer.jdbc.*
instead and carry on as usual.

SQL data types:
BLOB, CLOB, and
NCLOB

Yes Yes Yes Yes Yes

Updatable result sets No No No No No

Description mimjdbc1 mimjdbc2 mimjdbc3 minjdbc3 midjdbc2

6 Chapter 1 Introduction
Differences Between the Drivers
Importing the JDBC Classes
Because the K Virtual Machine per default does not allow loading system class (java.*)
applications accessing Mimer SQL databases should import the com.mimer.jdbc.*
classes instead. This makes the application less portable than a regular JDBC application,
but these are the constraints set by the environment.

The following Mimer classes correspond to the named interface classes in the regular
JDBC API.

See also the javadoc for the Mimer MIDP driver. It is available on the Mimer SQL
Developer site: http://developer.mimer.com/documentation/latest_javadoc_midp/index.html.

FLOAT and DOUBLE PRECISION
Databases with FLOAT, DOUBLE PRECISION, REAL and INTEGER(n) columns which are
required to expose these numbers in a MIDlet can use one the following tricks to go
around the float and BigDecimal limitation in the K Virtual Machine.

1 It is always possible to get the SQL FLOAT or DOUBLE PRECISION value into a
java.lang.String. This will work particularly well if the data is only to be
displayed.

JDBC class Mimer class

java.sql.BatchUpdateException com.mimer.jdbc.BatchUpdateException

java.sql.Blob com.mimer.jdbc.Blob

java.sql.CallableStatement com.mimer.jdbc.CallableStatement

java.sql.Clob com.mimer.jdbc.Clob

java.sql.Connection com.mimer.jdbc.Connection

java.sql.DatabaseMetaData com.mimer.jdbc.DatabaseMetaData

java.sql.DataSource com.mimer.jdbc.MimerDataSource

java.sql.DataTruncation com.mimer.jdbc.DataTruncation

java.sql.PreparedStatement com.mimer.jdbc.PreparedStatement

java.sql.ResultSet com.mimer.jdbc.ResultSet

java.sql.ResultSetMetaData com.mimer.jdbc.ResultSetMetaData

java.sql.SQLException com.mimer.jdbc.SQLException

java.sql.SQLWarning com.mimer.jdbc.SQLWarning

java.sql.Statement com.mimer.jdbc.Statement

java.sql.Types com.mimer.jdbc.Types

http://developer.mimer.com/documentation/latest_javadoc_midp/index.html

Mimer JDBC 7
Driver Guide
2 To handle fractions so that they may be used to some calculations, make sure at the
SQL level to always return integers and reserving the last digits of the integer for
decimals. If the database has a FLOAT column and we are interested in 4 decimals,
do the following SQL:

select cast(OUR_FLOAT*10000 as bigint) from OUR_TABLE

At the application level, place the result in an int or a long, but assume that the
last 4 digits are decimals when displaying values to the user. In addition, decimals
entered by the user must be handled similarly by the application before being
inserted to the database. The following SQL statement may be used to make the
float appear correctly in a table.

insert into OUR_TAB(OUR_FLOAT) values (cast(? as float)/10000);

DATE, TIME and TIMESTAMP
DATE, TIME and TIMESTAMP system classes (java.util.Date) are not included in the
MIDP specification. Therefore the Mimer client cannot return DATE, TIME or
TIMESTAMP objects. Please use string getter and setter methods instead.

Logging
To keep the driver size small and to optimize performance the Mimer JDBC drivers do
not perform any logging. For logging, we provide a separate driver, Mimer JDBC Trace
driver.

Mimer JDBC Trace driver is a full JDBC Driver that covers all of JDBC by calling the
matching routines of the logged JDBC Driver.

It produces a log of every JDBC call an application makes, and also measures the elapsed
time for each call. The log can be written to a file, or can be displayed directly in a
window.

For more information, see http://developer.mimer.com/howto/howto_28.htm.

http://developer.mimer.com/howto/howto_28.htm

8 Chapter 1 Introduction
Logging

Mimer JDBC 9
Driver Guide
Chapter 2

Using the Mimer
JDBC Driver

This chapter explains how to load the Mimer JDBC driver and how to connect to a Mimer
SQL database. It also contains JDBC application examples and discusses driver
characteristics.

Loading a Driver
To use the Mimer JDBC driver, it must be loaded into the Java environment. The Java
environment locates a driver by a search along the class path, defined in the CLASSPATH
environment variable.

The CLASSPATH environment variable informs the Java environment where to find Java
class files, such as the Mimer JDBC drivers.

The Mimer JDBC driver jar file, including the directory specification, should be added to
the Java class path, as can be seen in the following examples:

Besides defining the CLASSPATH environment variable explicitly, it can also be defined
for a specific session when executing the application. For example:

java -classpath /usr/lib/mimjdbc3.jar JdbcApplication

Connecting the Traditional Way
The connection provides the link between the application and the Mimer SQL database
server. To make a connection using the DriverManager class requires two operations,
i.e. loading the driver and making the connection.

The class name of the Mimer JDBC Driver is:
com.mimer.jdbc.Driver

UNIX: # echo $CLASSPATH

CLASSPATH=.:/usr/lib/mimjdbc3.jar

Win: % set CLASSPATH=.;D:\MIMJDBC3.JAR

10 Chapter 2 Using the Mimer JDBC Driver
Connecting the Traditional Way
The class name of the Mimer JDBC Trace Driver is:
com.mimer.jtrace.Driver

The jar file referenced in the CLASSPATH determines which driver is loaded.

A driver can be explicitly loaded using the standard Class.forName method:
import java.io.*;
import java.sql.*;

…

try {
Class.forName("com.mimer.jdbc.Driver");

} catch (java.lang.ClassNotFoundException cnf) {
System.err.println("JDBC driver not found");
return;

}

Alternatively, DriverManager, when it initializes, looks for a jdbc.drivers property
in the system properties. The jdbc.drivers property is a colon-separated list of drivers.

The DriverManager attempts to load each of the named drivers in this list of drivers.
The jdbc.drivers property can be set like any other Java property, by using the -D
option:

java -Djdbc.drivers=com.mimer.jdbc.Driver class

The property can also be set from within the Java application or applet:
Properties prp = System.getProperties();
prp.put("jdbc.drivers",

"com.mimer.jdbc.Driver:com.mimer.jtrace.Driver");
System.setProperties(prp);

Note: Neither of the mechanisms used to load the driver specify that the application
will actually use the driver. The driver is merely loaded and registered with the
DriverManager.

Connecting With URL
To make the actual database connection, a URL string is passed to the
DriverManager.getConnection method in the JDBC management layer.

The URL defines the data source to connect to. The JDBC management layer locates a
registered driver that can connect to the database represented by the URL.

URL Syntax
The Mimer JDBC drivers support the following URL syntax:

jdbc:mimer:[protocol:][URL-field-list][property-list]

URL-field-list options can be combined with property-list options.

Protocol
If a protocol is specified, the driver will load the mimcomm JNI library and use native
routines to connect to the database. If the protocol is not specified (or is an empty string),
no JNI library will be loaded and a TCP/IP connection will be made using standard Java
network packages in you Java runtime.

Mimer JDBC 11
Driver Guide
Supported protocols include:

URL-field-list
All fields in the URL-field-list are optional.

The database server host computer, with or without a user specification, is introduced by
// and the database name is introduced by /, like:

[//[user[:password]@]serverName[:portNumber]] [/databaseName]

A Connection object is returned from the getConnection method, for example:
String url = "jdbc:mimer://MIMER_ADM:admin@localhost/ExampleDB";
Connection con = DriverManager.getConnection(url);

Alternatively, the getConnection method allows the user name and password to be
passed as parameters:

url = "jdbc:mimer://localhost/ExampleDB";
con = DriverManager.getConnection(url, "MIMER_ADM", "admin");

Property-list
The property-list for the Mimer JDBC Driver is optional. The list is introduced by a
leading question mark ? and where there are several properties defined they are separated
by ampersands &, like:

?property=value[&property=value[&property=value]]

The following properties are supported:

protocol Explanation

local Use shared memory communication to a server that runs on your
local machine. This protocol is often much faster than TCP/IP-based
communication.

tcp Connects to the server using TCP/IP, but through the mimcomm JNI
library.

rapi Use the RAPI protocol to connect to mobile devices (Windows only).

decnet Use Decnet to connect to a remote server (VMS only).

Property Explanation

databaseName Name of database server to access

user User name used to log in to the database

password Password used for the login

serverName Computer on which the database server is running, the default is
localhost

portNumber Port number to use on the database server host, the default is 1360

protocol The protocol to use when connecting. If set, load the mimcomm JNI
library. If empty, use standard Java TCP/IP support.

12 Chapter 2 Using the Mimer JDBC Driver
Connecting the J2EE Way
The following example demonstrates a connection using the driver properties:
url = "jdbc:mimer:?databaseName=ExampleDB"

+ "&user=MIMER_ADM"
+ "&password=admin"
+ "&serverName=srv2.mimer.com";

con = DriverManager.getConnection(url);

Alternatively a java.util.Properties object can be used:
Properties dbProp = new Properties();

dbProp.put("databaseName", "ExampleDB");
dbProp.put("user", "MIMER_ADM");
dbProp.put("password", "admin");
con = DriverManager.getConnection("jdbc:mimer:", dbProp);

Elements from the URL-field-list and the property-list can be combined:
url = "jdbc:mimer:/ExampleDB"

+ "?user=MIMER_ADM"
+ "&password=admin";

The DriverPropertyInfo class is available for programmers who need to interact with
a driver to discover the properties that are required to make a connection. This enables a
generic GUI tool to prompt the user for the Mimer SQL connection properties:

Driver drv;
DriverPropertyInfo [] drvInfo;

drv = DriverManager.getDriver("jdbc:mimer:");
drvInfo = drv.getPropertyInfo("jdbc:mimer:", null);
for (int i = 0; i < drvInfo.length; i++) {

System.out.println(drvInfo[i].name + ": " + drvInfo[i].value);
}

After connecting to the database, all sorts of information about the driver and database is
available through the use of the getMetadata method:

DatabaseMetaData dbmd;

dbmd = con.getMetaData();

System.out.println("Driver " + dbmd.getDriverName());
System.out.println(" Version " + dbmd.getDriverVersion());
System.out.println("Database " + dbmd.getDatabaseProductName());
System.out.println(" Version " + dbmd.getDatabaseProductVersion ());
con.close();

The close method tells JDBC to disconnect from the Mimer SQL database server. JDBC
resources are also released.

It is usual for connections to be explicitly closed when no longer required. The normal
Java garbage collection has no way of freeing external resources, such as the Mimer SQL
database server.

Connecting the J2EE Way
Along with J2EE came a new way for JDBC drivers to connect to database servers.
Instead of requesting connections through the java.sql.DriverManager class,
applications should connect using the javax.sql.DataSource,
com.mimer.jdbc.MimerConnectionPoolDataSource or
com.mimer.jdbc.MimerXADataSource interfaces.

Mimer JDBC 13
Driver Guide
Deploying Mimer JDBC in JNDI
The Mimer DataSource class is com.mimer.jdbc.MimerDataSource. When
applications are deployed within the J2EE environment, a properly initiated
MimerDataSource object should be stored in JNDI for the application server to retrieve
at runtime. Application servers may use the JavaBean interface to obtain configuration
parameters for MimerDataSource objects.

These are the DataSource attributes recognized by the Mimer JDBC drivers:

See sample programs further down for programming examples.

Deploying Mimer JDBC in a Connection Pool
Mimer JDBC may be deployed in J2EE compliant connection pools.

When deploying Mimer JDBC in a connection pool, the class
com.mimer.jdbc.MimerConnectionPoolDataSource should be used. This class
features the same attributes as described above for .MimerDataSource.

Deploying Mimer JDBC in Distributed Transaction
Environments

Mimer JDBC may be used in J2EE compliant distributed transaction environments.

When deploying Mimer JDBC to be used in distributed transactions, the class
com.mimer.jdbc.MimerXADataSource should be used. Whenever connections are
created using this factory class, Mimer SQL may cooperate in transactions with any other
XA compliant database server.

Read more about Mimer SQL and distributed transactions in Mimer SQL Programmer’s
Manual.

DataSource
Attributes

Description

serverName The computer on which the database server is running, the
default is localhost

portNumber The port number to use on the server host, the default is 1360

description A textual description

databaseName The name of the database on the server (required)

user User name

password Password

protocol The protocol to use when connecting via the mimcomm JNI
library

service The service to connect to. This field plays the same role as the
portNumber field, but any string can be used for protocols that
don't use integer-valued port numbers (such as Decnet or named
pipes). If a service value is specified, any portNumber value is
ignored.

14 Chapter 2 Using the Mimer JDBC Driver
Mimer JDBC/CDC Optional Package
Mimer JDBC/CDC Optional Package
The Mimer SQL product contains a Mimer JDBC driver suitable for CDC/FP
environments. This driver follows a specification laid out by the Java Community Process
(JCP) 169. The detailed specification, JDBC for CDC/FP Optional Package
specification, can be found at the Sun web site (http://java.sun.com).

This driver is targeted at more powerful handheld environments, such as PDA’s,
handheld computers and high-end mobile telephones.

The Mimer JDBC/CDC driver is located in the Mimer installation directory under the
name minjdbc3.jar. The steps required to use the driver in a project varies somewhat
depending on the target platform.

Sony Ericsson CDC Platform
The Sony Ericsson CDC Platform is targeted at their high-end Symbian telephones, for
example M600, P990 and W950. This package is available as a download from their
developer site.

In order to use the Mimer JDBC driver in a project with the Sony Ericsson CDC Platform,
two things must be done:

1 Make sure the Mimer JDBC driver is installed in the private directory of the
application in question. If the UID of the application is FF000000, this directory
would be \private\FF000000 on any drive. To make the driver available to
your application in the Symbian emulator, you need to copy the minjdbc3.jar
file to the application private folder. For example:
copy "c:\program files\mimer sql 9.3\minjdbc3.jar"
c:\symbian\uiq3sdk\epoc32\winscw\c\private\FF000000\minjdbc3.jar

To make the driver available for deployment on the actual telephone, a line similar
to the following need to be included in the application package specification file
(.PKG):

"c:\program files\mimer sql 9.3\minjdbc3.jar" "!:\private\FF000000\minjdb3.jar"

2 Specify the Mimer JDBC driver in the classpath. This is done in an invocation
specification file, with the extension .j9. For example, an application named
HelloMimerCDC with the UID FF000000 may use this invocation file:
-cp c:\private\FF000000\HelloMimerCDC.jar;c:\private\FF000000\minjdbc3.jar
HelloMimerCDC

A complete programming example is available for download at the Mimer SQL
Developer site.

Error Handling
Error handling is taken care of by using the classes SQLException and SQLWarning.

http://java.sun.com

Mimer JDBC 15
Driver Guide
The Class SQLException
The SQLException class provides information relating to database errors. Details
include a textual description of the error, an SQLState string, and an error code. There
may be a number of SQLException objects for a failure.

try {

…

} catch(SQLException sqe) {
SQLException stk;

stk = sqe; // Save initial exception for stack trace

System.err.println("\n*** SQLException:\n");
while (sqe != null) {

System.err.println("Message: " + sqe.getMessage());
System.err.println("SQLState: " + sqe.getSQLState());
System.err.println("NativeError: " + sqe.getErrorCode());
System.err.println();

sqe = sqe.getNextException();
}

stk.printStackTrace(System.err);
}

The Class SQLWarning
The SQLWarning class provides information relating to database warnings. The
difference between warnings and exceptions is that warnings, unlike exceptions, are not
thrown.

The getWarnings method of the appropriate object (Connection, Statement or
ResultSet) is used to determine whether warnings exist.

Warning information can be retrieved using the same mechanisms as in the
SQLException example above but with the method getNextWarning retrieving the
next warning in the chain:

con = DriverManager.getConnection(url);
checkSQLWarning(con.getWarnings());

…

private static boolean checkSQLWarning(SQLWarning sqw)
throws SQLException {

boolean rc = false;

if (sqw != null) {
rc = true;

System.err.println("\n*** SQLWarning:\n");
while (sqw != null) {

System.err.println("Message: " + sqw.getMessage());
System.err.println("SQLState: " + sqw.getSQLState());
System.err.println("NativeError: " + sqw.getErrorCode());
System.err.println();

sqw = sqw.getNextWarning();
}

}

return rc;
}

16 Chapter 2 Using the Mimer JDBC Driver
Viewing Driver Characteristics
Viewing Driver Characteristics
By using the java com.mimer.jdbc.Driver command, you can view characteristics
of a specific driver and the current environment:

java com.mimer.jdbc.Driver options

The options available are:
:

The following is an example that uses the -version option:
java com.mimer.jdbc.Driver -version
Mimer JDBC driver version 3.15

Used without any arguments, the command will display usage information.

Note: This functionality is only supported for the mimjdbc1, mimjdbc2, and
mimjdbc3 drivers. Other drivers must use the getMetadata method.

The mimcomm JNI library
The Mimer JDBC driver can be used in a 100% native Java environment. In this case, the
connection to a Mimer database server is done by the TCP/IP support included in the Java
platform.

However, it is also possible to load an external library called mimcomm that includes
support for all the communication protocols available on the particular platform. Please
note that the mimcomm library may not be available on platforms that don't have a recent
version of Mimer SQL installed.

The name of the mimcomm library varies between platforms. It is called mimcomm.dll
on Windows, libmimcomm.so on Unix and MIMCOMM.EXE on VMS.

When you install a Mimer SQL distribution, the mimcomm library will normally be
installed in a place where the Java environment can find it. You can test this by using the
-mimcomm switch as a command line argument to the JDBC driver:

unix $ java -cp mimjdbc3.jar com.mimer.jdbc.Driver -mimcomm
System.getProperty("java.library.path"):
/usr/lib/SunJava2-1.4.2/jre/lib/i386/client:/usr/lib/SunJava2
-1.4.2/jre/lib/i386:/usr/lib/SunJava2-1.4.2/jre/../lib/i386:/
mimer/v925/dist/lib

System.loadLibrary("mimcomm"):

mimcomm library Version: V925B
JNI parameter method: JNI_COPY

Option Description

-version Display driver version

-sysprop Display all system properties

-errors List all JDBC error codes

-ping url Test the database at the specified url

-mimcomm Load the mimcomm JNI library and show its version number.
Displays informational messages to help fix any problems.

Mimer JDBC 17
Driver Guide
When the JDBC driver loads the mimcomm library, it looks for the library in the path
specified by the java.library.path system property. If the JDBC driver cannot find the
library in the path listed, you should either move the mimcomm library to a directory
listed in the path or consult your Java manual for instructions on how to change the
java.library.path system property.

Java Program Examples
Below are a collection of small basic Java programs for different environments, showing
a database connection and a simple database operation with some error handling.

JDBC Application Example
The example Java program below creates a result set containing all rows of the data
dictionary view INFORMATION_SCHEMA.TABLES, then each row is fetched and
displayed on standard output.

In this example, the user name and password are given separately using the
DriverManager.getConnection method, i.e. not given in the URL specification.

18 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples
The below example will work with the mimjdbc drivers.
import java.sql.*;

class Example
{

public static void main(String[] args)
{

try {
Class.forName("com.mimer.jdbc.Driver");
String url = "jdbc:mimer://my_node.mimer.se/customers";
Connection con = DriverManager.getConnection(url,

 "SYSADM","SYSPW");
Statement stmt = con.createStatement();
String sql = "select TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE

from INFORMATION_SCHEMA.TABLES";
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {

String schema = rs.getString(1);
String name = rs.getString(2);
String type = rs.getString(3);
System.out.println(schema + " " + name + " " + type);

}
rs.close();
stmt.close();
con.close();

} catch (SQLException e) {
System.out.println("SQLException!");
while (e != null) {

System.out.println("SQLState : " + e.getSQLState());
System.out.println("Message : " + e.getMessage());
System.out.println("ErrorCode : " + e.getErrorCode());
e = e.getNextException();
System.out.println("");

}
} catch (Exception e) {

System.out.println("Other Exception");
e.printStackTrace();

}
}

}

Another way to provide connection properties is to supply a java.util.Properties
object to the DriverManager.getConnection method.

JDBC Application Example for J2EE
This example Java program deploys a com.mimer.jdbc.MimerDataSource in a file
system JNDI repository. Note that the file system JNDI repository have to be downloaded
from Sun. It is available for download at http://java.sun.com/products/jndi/serviceproviders.html.
At this site, several other service providers may be downloaded as well.

Examples provided in this section will only work with the mimjdbc2 and mimjdbc3
drivers.

http://java.sun.com/products/jndi/serviceproviders.html

Mimer JDBC 19
Driver Guide
import javax.sql.*;
import java.sql.*;
import javax.naming.*;
import javax.naming.directory.*;
import java.util.Hashtable;

public class RegisterJNDI
{

public static void main(String argv[])
{

try {
com.mimer.jdbc.MimerDataSource ds =

new com.mimer.jdbc.MimerDataSource();

ds.setDescription("Our Mimer data source");
ds.setServerName("my_node.mimer.se");
ds.setDatabaseName("customers");
ds.setPortNumber("1360");
ds.setUser("SYSADM");
ds.setPassword("SYSPW");

// Set up environment for creating initial context
Hashtable env = new Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

env.put(Context.PROVIDER_URL, "file:.");
Context ctx = new InitialContext(env);

// Register the data source to JNDI naming service
ctx.bind("jdbc/customers", ds);

} catch (Exception e) {
System.out.println(e);
return;

}
}

}

Once the data source is deployed, applications may connect using the deployed
DataSource object. For instance like the below code snippet:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:.");
Context ctx = new InitialContext(env);
DataSource ds = (DataSource)ctx.lookup("jdbc/customers");
return ds.getConnection();

Using the Driver from Applets
The example Java applet below creates a result set containing all rows of the data
dictionary view INFORMATION_SCHEMA.TABLES, then each row is fetched and
displayed on standard output.

In this example, the user name and password are given separately using the
DriverManager.getConnection method, i.e. not given in the URL specification.

20 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples
The example will work with the mimjdbc drivers.
import java.sql.*;
import java.applet.*;
import java.awt.*;

public class ExampleApplet extends java.applet.Applet {
public void init() {

resize(1200, 600);
}

public void paint(Graphics g) {
int row = 1;
g.drawString("Listing tables:", 20, 10 * row++);
try {

Class.forName("com.mimer.jdbc.Driver");
String url = "jdbc:mimer://my_node.mimer.se/customers";
Connection con = DriverManager.getConnection(url, "SYSADM",

"SYSPW");
Statement stmt = con.createStatement();
String sql = "select TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE

from INFORMATION_SCHEMA.TABLES";
ResultSet rs = stmt.executeQuery(sql);
while (rs.next()) {

String schema = rs.getString(1);
String name = rs.getString(2);
String type = rs.getString(3);
g.drawString(schema + " " + name + " " + type, 50,

10 * row++);
}
rs.close();
stmt.close();
con.close();

} catch (SQLException e) {
g.drawString("SQLException!", 20, 10 * row++);
while (e != null) {

g.drawString("SQLState : " + e.getSQLState(), 20,
10 * row++);

g.drawString("Message : " + e.getMessage(), 20,
10 * row++);

g.drawString("ErrorCode : " + e.getErrorCode(), 20,
10 * row++);

e = e.getNextException();
g.drawString("", 20, 10*row++);

}
} catch (Exception e) {

g.drawString("Other Exception!", 20, 10 * row++);
g.drawString(e.toString(), 20, 10 * row++);

}
}

}

Executing the Java Applet Example
To use a Mimer JDBC Driver in a Java applet, copy the driver jar file to the directory
containing the applet’s Java classes.

Mimer JDBC 21
Driver Guide
This directory must be accessible to the Web server. The driver jar file name should be
given as the applet tag’s ARCHIVE parameter in the HTML file. For example:

<html>
<head>
<title> The Example Applet

</head>
<body>
Example Applet:
<applet archive="mimjdbc2.jar"

code="ExampleApplet.class"
width=800
height=600>

</applet>
</body>

</html>

You execute the applet by accessing the HTML file from a browser, for example:
http://my_node/ExampleApplet.html

Note: There is a security restriction for Java applets, which states that a network
connection can only be opened to the host from which the applet itself was
downloaded. This means that both the Web server distributing the applet code
and the database server must reside on the same host computer.

22 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples
Mimer JDBC Midlet Example
This example midlet connects to a Mimer SQL database db on the host
my_node.mimer.se using TCP/IP port 4711. Instructions on compiling and executing
the example is found in the article ‘Java programming for mobile phones with Mimer
SQL’, found at http://developer.mimer.com/howto/howto_43.htm. The example uses the
environment described in the article.

Example program:
import com.mimer.jdbc.*;
import java.lang.*;
import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

// A MIDlet which browse the corporate telephone directory
public class BrowsePhoneNumbers extends MIDlet

implements CommandListener,Runnable {
private Command exitCommand,browseCommand,backCommand;
private Display display;
private Form mainForm;
private List resultList;
private boolean firstTime;
private MimerDataSource mds;
private TextField namField,grpField,phnField;
private Thread dbthread;

public BrowsePhoneNumbers() {
display = Display.getDisplay(this);
exitCommand = new Command("Exit", Command.EXIT, 1);
browseCommand = new Command("Browse", Command.ITEM, 1);
backCommand = new Command("Back", Command.BACK, 1);
mainForm = new Form("Corporate phone dictionary");
mds = new MimerDataSource();
mds.setServerName("my_node.mimer.se");
mds.setDatabaseName("db");
mds.setPortNumber(4711);
namField = new TextField("Name", "", 25, TextField.ANY);
grpField = new TextField("Group", "", 15, TextField.ANY);
phnField = new TextField("Phone", "", 15, TextField.ANY);
resultList = new List("Found numbers", Choice.IMPLICIT);
resultList.addCommand(backCommand);
resultList.setCommandListener(this);
firstTime = true;
}

// Start the MIDlet by creating the TextBox and
// associating the exit command and listener.
public void startApp() {
if (firstTime) {

mainForm.append(namField);
mainForm.append(grpField);
mainForm.append(phnField);

firstTime = false;
}

mainForm.addCommand(exitCommand);
mainForm.addCommand(browseCommand);
mainForm.setCommandListener(this);
display.setCurrent(mainForm);
}

http://developer.mimer.com/howto/howto_43.htm

Mimer JDBC 23
Driver Guide
// Pause is a no-op because there are no background
// activities or record stores to be closed.
public void pauseApp() { }

// Destroy must cleanup everything not handled
// by the garbage collector.
// In this case there is nothing to cleanup.
public void destroyApp(boolean unconditional) { }

public void commandAction(Command c, Displayable s) {
if (c == exitCommand) {

destroyApp(false);
notifyDestroyed();

}
if (c == browseCommand) {

// resultList.deleteAll(); This may be uncommented on MIDP 2.0
display.setCurrent(resultList);
Thread thread = new Thread(this);
thread.start();

}
if (c == backCommand) {

display.setCurrent(mainForm);
}

}

public void run()
{
Connection con;
try {

con = mds.getConnection("SYSADM","SYSADM");
try {

PreparedStatement ps =
con.prepareStatement("call PHNQRY(?,?,?)");

ps.setString(1,namField.getString());
ps.setString(2,grpField.getString());
ps.setString(3,phnField.getString());
ps.execute();
ResultSet rs = ps.getResultSet();
while (rs.next()) {

resultList.append(rs.getString(1)+", "+rs.getString(2)+",
"+rs.getString(3),null);

}
} finally {
con.close();
}

} catch (SQLException se) {
resultList.append(se.getMessage()+

" SQLCODE "+se.getErrorCode(),null);
}
}

}

24 Chapter 2 Using the Mimer JDBC Driver
Java Program Examples

Mimer JDBC 25
Driver Guide
Chapter 3

Programming With
JDBC

This chapter describes some programming aspects when using the Mimer JDBC Driver.

We recommend you to read ’JDBCBench, a Java Database Case Study’ available on our
developer Web site, http://developer.mimer.com/features/feature_16.htm.

Examples in this Chapter
The examples are based on the sample schema that is provided as part of the Mimer SQL
distribution. They assume that the example database environment has been created.

Transaction Processing
Mimer SQL uses a method for transaction management called Optimistic Concurrency
Control. OCC does not involve any locking of rows as such, and therefore cannot cause
a deadlock.

JDBC Transactions
JDBC transactions are controlled through the Connection object. There are two modes
for managing transactions within JDBC:

• auto-commit

• manual-commit.

The setAutoCommit method is used to switch between the two modes.

Auto-commit Mode
Auto-commit mode is the default transaction mode for JDBC. When a connection is
made, it is in auto-commit mode until setAutoCommit is used to disable auto-commit.

In auto-commit mode each individual statement is automatically committed when it
completes successfully, no explicit transaction management is necessary. However, the
return code must still be checked, as it is possible for the implicit transaction to fail.

http://developer.mimer.com/features/feature_16.htm

26 Chapter 3 Programming With JDBC
Transaction Processing
Manual-commit Mode
When auto-commit is disabled, i.e. manual-commit is set, all executed statements are
included in the same transaction until it is explicitly completed.

When an application turns auto-commit off, the next statement against the database
starts a transaction. The transaction continues either the commit or the rollback
method is called. The next command sent to the database after that starts a new
transaction.
Calling the commit method ends the transaction. At that stage, Mimer SQL checks
whether the transaction is valid and raises an exception if a conflict is identified.

If a conflict is encountered, the application determines how to continue, for example
whether to automatically retry the transaction or inform the user of the failure. The
application is notified about the conflict by an exception that must be caught and
evaluated.

A request to rollback a transaction causes Mimer SQL to discard any changes made since
the start of the transaction and to end the transaction.

Use the commit or rollback methods, rather than using the SQL COMMIT or ROLLBACK
statements to complete transactions, for example:

Statement stmt;
int transactionAttempts;

final int MAX_ATTEMPTS = 5; // Maximum transaction attempts

// Open a connection
url = "jdbc:mimer:/ExampleDB";
con = DriverManager.getConnection(url, "MIMER_ADM", "admin");

con.setAutoCommit(false); // Explicit transaction handling

stmt = con.createStatement();

// Loop until transaction successful (or max attempts exceeded)
for (transactionAttempts = 1; ; transactionAttempts++) {

// Perform an operation under transaction control
stmt.executeUpdate("UPDATE mimer_store.currencies"

+ " SET exchange_rate = exchange_rate * 1.05"
+ " WHERE code = 'USD'");

try {
con.commit(); // Commit transaction

System.out.println("Transaction successful");
break;

} catch(SQLException sqe) {
// Check commit error - allow serialization failure
if (sqe.getSQLState().equals("40001")) {

// Check number of times the transaction has been attempted
if (transactionAttempts >= MAX_ATTEMPTS) {

// Raise exception with application defined SQL state
throw new SQLException("Transaction failure", "UET01");

}
}
else {

// Raise all other exceptions to outer handler
throw sqe;

}
} finally {

con.close();
}

}

Mimer JDBC 27
Driver Guide
Setting the Transaction Isolation Level
The setTransactionIsolation method sets the transaction isolation level. The
default isolation level for Mimer SQL is TRANSACTION_REPEATABLE_READ.

Note: With Enterprise Java Beans, the EJB environment provides the transaction
management and therefore explicit transaction management is not required.

Executing an SQL Statement
The Connection object supports three types of Statement objects that can be used to
execute an SQL statement or stored procedure:

• a Statement object is used to send SQL statements to the database

• the PreparedStatement interface inherits from Statement

• the CallableStatement object inherits both Statement and PreparedStatement
methods.

Using a Statement Object
The Connection method createStatement is used to create a Statement object that can
be used to execute SQL statements without parameters.

The executeUpdate method of the Statement object is used to execute an SQL
DELETE, INSERT, or UPDATE statement, i.e. a statement that does not return a result
set, it returns an int indicating the number of rows affected by the statement, for
example:

int rowCount;

stmt = con.createStatement();

rowCount = stmt.executeUpdate(
"UPDATE mimer_store.currencies"

+ " SET exchange_rate = exchange_rate * 1.05"
+ " WHERE code = 'USD'");

System.out.println(rowCount + " rows have been updated");

Using a PreparedStatement Object
Where an SQL statement is being repeatedly executed, a PreparedStatement object is
more efficient than repeated use of the executeUpdate method against a Statement
object.

In this case the values for the parameters in the SQL statement (indicated by ?) are
supplied with the setXXX method, where XXX is the appropriate type for the parameter.

28 Chapter 3 Programming With JDBC
Batch Update Operations
For example:
PreparedStatement pstmt;
int rowCount;

pstmt = con.prepareStatement(
"UPDATE mimer_store.currencies"

+ " SET exchange_rate = exchange_rate * ?"
+ " WHERE code = ?");

pstmt.setFloat(1, 1.05f);
pstmt.setString(2, "USD");
rowCount = pstmt.executeUpdate();

pstmt.setFloat(1, 1.08f);
pstmt.setString(2, "GBP");
rowCount = pstmt.executeUpdate();

Using a CallableStatement Object
Similarly, when using stored procedures, a CallableStatement object allows
parameter values to be supplied, for example:

CallableStatement cstmt;

cstmt = con.prepareCall("CALL mimer_store.order_item(?, ?, ?)");

cstmt.setInt(1, 700001);
cstmt.setInt(2, 60158);
cstmt.setInt(3, 2);
cstmt.executeUpdate();

The setNull method allows a JDBC null value to be specified as an IN parameter.
Alternatively, use a Java null value with a setXXX method.

For example:
pstmt.setString(4, null);

A more complicated example illustrates how to handle an output parameter:
CallableStatement cstmt;

cstmt = con.prepareCall("CALL mimer_store.age_of_adult(?, ?)");

cstmt.setString(1, "US");
cstmt.registerOutParameter(2, Types.CHAR);

cstmt.executeUpdate();
System.out.println(cstmt.getString(2) + " years");

Batch Update Operations
JDBC provides support for batch update operations. The BatchUpdateException
class provides information about errors that occur during a batch update using the
Statement method executeBatch.

The class inherits all the method from the class SQLException and also the method
getUpdateCounts which returns an array of update counts for those commands in the
batch that were executed successfully before the error was encountered.

Mimer JDBC 29
Driver Guide
For example:
try {

…

} catch(BatchUpdateException bue) {
System.err.println("\n*** BatchUpdateException:\n");

int [] affectedCount = bue.getUpdateCounts();
for (int i = 0; i < affectedCount.length; i++) {

System.err.print(affectedCount[i] + " ");
}
System.err.println();

System.err.println("Message: " + bue.getMessage());
System.err.println("SQLState: " + bue.getSQLState());
System.err.println("NativeError: " + bue.getErrorCode());
System.err.println();

SQLException sqe = bue.getNextException();
while (sqe != null) {

System.err.println("Message: " + sqe.getMessage());
System.err.println("SQLState: " + sqe.getSQLState());
System.err.println("NativeError: " + sqe.getErrorCode());
System.err.println();

sqe = sqe.getNextException();
}

}

Note: The BatchUpdateException object points to a chain of SQLException
objects.

Enhancing Performance
The batch update functionality allows the statement objects to support the submission of
a number of update commands as a single batch.

The ability to batch a number of commands together can have significant performance
benefits. The methods addBatch, clearBatch and executeBatch are used in
processing batch updates.

The PreparedStatement example above could be simply rewritten to batch the
commands.

For example:
PreparedStatement pstmt;
int [] affectedCount;

pstmt = con.prepareStatement(
"UPDATE mimer_store.currencies"

+ " SET exchange_rate = exchange_rate * ?"
+ " WHERE code = ?");

pstmt.setFloat(1, 1.05f);
pstmt.setString(2, "USD");
pstmt.addBatch();

pstmt.setFloat(1, 1.08f);
pstmt.setString(2, "GBP");
pstmt.addBatch();

affectedCount = pstmt.executeBatch();

30 Chapter 3 Programming With JDBC
Result Set Processing
The Mimer SQL database server executes each command in the order it was added to the
batch and returns an update count for each completed command.

If an error is encountered while a command in the batch is being processed then a
BatchUpdateException is thrown (see Error Handling on page 14) and the
unprocessed commands in the batch are ignored.

In general it may be advisable to treat all the commands in the batch as a single
transaction, allowing the application to have control over whether those commands that
succeeded are committed or not.

Set the Connection object's auto-commit mode to off to group the statements together in
a single transaction. The application can then commit or rollback the transaction as
required.

Calling the method clearBatch clears a Statement object's list of commands.

Using the Close method to close any of the Statement objects releases the database and
JDBC resources immediately. It is recommended that Statement objects be explicitly
closed as soon as they are no longer required.

Result Set Processing
There are a number of ways of returning a result set. Perhaps the simplest is as the result
of executing an SQL statement using the executeQuery method, for example:

Statement stmt;
ResultSet rs;

stmt = con.createStatement();

rs = stmt.executeQuery("SELECT *"
+ " FROM mimer_store.currencies");

while (rs.next()) {
System.out.println(rs.getString("CURRENCY"));

A ResultSet can be thought of as an array of rows. The 'current row' is the row being
examined and manipulated at any given time, and the location in the ResultSet is the
'current row position'.

Information about the columns in a result set can be retrieved from the metadata, for
example:

Statement stmt;
ResultSet rs;
ResultSetMetaData rsmd;

stmt = con.createStatement();

rs = stmt.executeQuery("SELECT *"
+ " FROM mimer_store.currencies");

rsmd = rs.getMetaData();
for (int i = 1; i <= rsmd.getColumnCount(); i++) {

System.out.println(rsmd.getColumnName(i));
System.out.println(" Type: " + rsmd.getColumnTypeName(i));
System.out.println(" Size: " + rsmd.getColumnDisplaySize(i));

}

Mimer JDBC 31
Driver Guide
Scrolling in Result Sets
The previous examples used forward-only cursors (TYPE_FORWARD_ONLY), which
means that they only support fetching rows serially from the start to the end of the cursor,
this is the default cursor type.

In modern, screen-based applications, the user expects to be able to scroll backwards and
forwards through the data. While it is possible to cache small result sets in memory on the
client, this is not feasible when dealing with large result sets. Support for scrollable
cursors provide the answer.

Scrollable cursors allow you to move forward and back as well as to a particular row
within the ResultSet. With scrollable cursors it is possible to iterate through the result set
many times.

The Mimer drivers’ scrollable cursors are of type TYPE_SCROLL_INSENSITIVE, which
means that the result set is scrollable but also that the result set does not show changes
that have been made to the underlying database by other users, i.e. the view of the
database is consistent. To allow changes to be reflected may cause logically inconsistent
results.

Positioning the Cursor
There are a number of methods provided to position the cursor:
• absolute

• afterLast

• beforeFirst

• first

• last

• next

• previous

• relative

There are also methods to determine the current position of the cursor:
• isAfterLast

• isBeforeFirst

• isFirst

• isLast

The getRow method returns the current cursor position, starting from 1. This provides a
simple means of finding the number of rows in a result set.

For example:
Statement stmt;
ResultSet rs;

stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

rs = stmt.executeQuery("SELECT code, currency"
+ " FROM mimer_store.currencies"
+ " WHERE code LIKE 'A%'");

System.out.println("\nOriginal sort order");
while (rs.next()) {

System.out.println(rs.getString(1) + " " + rs.getString(2));
}

32 Chapter 3 Programming With JDBC
Updating Data
System.out.println("\nReverse order");
while (rs.previous()) {

System.out.println(rs.getString(1) + " " + rs.getString(2));
}

rs.last();
System.out.println("\nThere are " + rs.getRow() + " rows");

The Mimer JDBC Driver will automatically perform a pre-fetch whenever a result set is
created. This means that a number of rows are transferred to the client in a single
communication across the network. If only a small number of rows are actually required
use setMaxRows to limit the number of rows returned in the result set.

Result Set Capabilities
A instance of the ResultSet class is created when a query is executed. The capabilities
of the result set depend on the arguments used with the createStatement (or
prepareStatement or prepareCall) method.

The first argument defines the type of the ResultSet, whether it is scrollable or non-
scrollable, and the second argument defines the concurrency option, i.e. the update
capabilities.

A ResultSet should only be made updatable if the functionality is going to be used,
otherwise the option CONCUR_READ_ONLY should be used. If used, both the type and the
concurrency option must be specified.

The following example creates a scrollable result set cursor that is also updatable:
stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,

ResultSet.CONCUR_UPDATABLE);

Even if the options used specify that the result set will be scrollable and updatable, it is
possible that the actual SQL query will return a ResultSet that is non-scrollable or non-
updatable.

Holdable cursors
The mimjdbc3.jar driver supports the JDBC 3 specification. As such it provides an
opportunity for application developers to create holdable cursors. The difference between
a holdable cursor and a regular cursor is that regular cursors are closed at the end of the
transaction. The holdable cursor can (theoretically) stay opened for an unlimited period
of time. However, leaving a cursor open for a long period of time may have serious
performance implications for the same reason long lasting transactions may impair server
performance.

Updating Data
Applications can update data by executing the UPDATE, DELETE, and INSERT statements.
An alternative method is to position the cursor on a particular row and then use DELETE
CURRENT, or UPDATE CURRENT statements.

The following example illustrates how this can be done:
Statement select;
PreparedStatement update;
ResultSet rs;

Mimer JDBC 33
Driver Guide
select = con.createStatement(ResultSet.TYPE_FORWARD_ONLY,
ResultSet.CONCUR_UPDATABLE);

select.setCursorName("CRN"); /* Name the cursor */

rs = select.executeQuery("SELECT currency"
+ " FROM mimer_store.currencies"
+ " WHERE code = 'ALL'"
+ " FOR UPDATE OF currency");

update = con.prepareStatement("UPDATE mimer_store.currencies"
+ " SET currency = ?"
+ " WHERE CURRENT OF crn");

while (rs.next()) {
if (rs.getString("CURRENCY").startsWith("Leke")) {

update.setString(1, "Albanian Leke");
}
else {

update.setString(1, "Leke");
}
update.executeUpdate();

}

Programming Considerations
Below is a summary of issues to be considered when programming with Mimer JDBC.

Interval Data
Both the JDBC specification and the Java language lack support for INTERVAL data
types.

You can use the getString and setString methods for values accessed by a driver
from database columns containing INTERVAL data.

Closing Objects
Although Java has automatic garbage collection, it is essential that you close JDBC
objects, such as ResultSets, Statements and Connections, when done with them.

Closing objects gives your application better control over resources.

If you don’t close objects, resources are kept allocated in the database server until garbage
collection is triggered, this can exhaust server resources.

Increasing Performance
• Use Stored Procedures

One of the main issues when trying to increase performance is to reduce network
traffic. For example, you can increase performance by using the database server to
return more accurate data instead of returning a large amount of unqualified data
which your application must handle. You can achieve this by using more
sophisticated SQL statements or by using stored procedures (PSM).

• Use More Than One Connection
Mimer JDBC drivers are thread-safe and use one lock per connection. So, to achieve
higher concurrency, an application should use several connections.

34 Chapter 3 Programming With JDBC
Programming Considerations
• Prefetching Data
The drivers are implemented to perform automatic prefetch, i.e. whenever a
resultSet is created, a buffer is filled with successive rows. This is an
optimization for throughput, allowing more data to be fetched to the client in the
single communication made.

The flip side of the coin is that response time, i.e. the time it takes to receive the first
record, may be increased (see Use setMaxRows below.)

• Use setMaxRows
If you know that only a small number of records are to be fetched, then you can use
the setMaxRows method to optimize the response time, i.e. to avoid an array fetch.

• Use PreparedStatements
Another way of increasing performance is to avoid recompiling SQL statements
unnecessarily. Whenever you use Statement.executeXXX methods, statements
are compiled. Instead, use parameterized precompiled statements, i.e.
PreparedStatement, whenever possible.

• Use Batched Statements
Using the Mimer JDBC Driver version 2 or later, you can reduce the number of
network requests by using batched statements.

If, for example, you replace 20 calls to Statement.execute() with 20 calls to
Statement.addBatch() followed by a Statement.executeBatch() call, 20
server network requests are replaced by a single network request.

If response time is an issue, this simple change may give a twenty-fold performance
improvement!

Note that batched statements for PreparedStatement and
CallableStatement differ from the implementation for the Statement class.
When using PreparedStatement or CallableStatement, only a single SQL
statement can be used in a batch. The addBatch() call (without argument) adds a
set of parameters to the batch. When you use batches, the same SQL statement is
called repeatedly with different parameters in a single network request.

In versions 2 and later, you can use the setFetchSize method to control the
amount of data fetched.

Mimer JDBC 35
Driver Guide
Chapter A

Change History
The following sections document changes in the drivers.

New Functions
This section describes the main new functions of each Mimer JDBC version.

New Functions in 3.18, 2.18 and 1.18
The JDBC version 18 drivers may now connect to Mimer SQL Micro servers. Note
however, that many features you normally expect in a Mimer SQL Engine are not
available in the Mimer SQL Micro Edition server.

An application may detect the Mimer SQL product type by calling
DatabaseMetaData.getDatabaseProductName(). This will return "Mimer SQL
Micro", "Mimer SQL Mobile", or "Mimer SQL Engine" - depending on the server type.

New Functions in 3.17, 2.17 and 1.17
Support for the BOOLEAN SQL data type that was introduced in Mimer SQL 9.3 servers.

New Functions in 3.16, 2.16 and 1.16
• The driver can load and use the mimcomm JNI library which allows the JDBC

driver to use all communication methods supported by Mimer on the platform.

• The classes MimerDataSource, MimerConnectionPoolDataSource and
MimerXADataSource have two additional properties: protocol and service. These
are needed when using the mimcomm JNI library. The new properties are
explained further in Deploying Mimer JDBC in JNDI on page 13.

New Functions in 3.15
• The first release of a JDBC 3 compliant driver.

• Holdable cursors.

New Functions in 2.9
Server data type NATIONAL CHARACTER LARGE OBJECT (NCLOB) is now supported.

36 Appendix A Change History
New Functions
New Functions in 2.8
The method PreparedStatement.setBytes is now supported on LONGVARBINARY
and PreparedStatement.setString on LONGVARCHAR. In the case of Mimer,
LONGVARBINARY is the same as a BLOB, and LONGVARCHAR is the same as a CLOB.

New Functions in 2.7
The object returned when calling .getBinaryStream, .getAsciiStream and
.getCharacterStream on BLOB and CLOB objects now implements the .mark(),
.reset() and .skip() methods.

New Functions in 2.5
Support for large objects; BINARY LARGE OBJECT (BLOB) and CHARACTER LARGE
OBJECT (CLOB). BLOB’s store any sequence of bytes, CLOB’s store Latin-1 character data.

New Functions in 2.4
Support for server NCHAR and NCHAR VARYING data types. They are used to store
Unicode data. By using these data types, any Java String object can now be stored in the
database. This is not the case when using CHARACTER or CHARACTER VARYING data
types since these can only store Latin-1 characters.

New Functions in 2.3
• Support for javax.sql.DataSource.

• Support for connection pooling using javax.sql.ConnectionPool DataSource

• Support for distributed transactions (XA).

New Functions in 2.0
• Scrollable cursors are now fully supported.

• All date, time and timestamp methods now support the java.util.Calendar
class for handling time zones. Mimer SQL 8.2 servers do not currently support
time zones and this feature enables you to use time zones.

• Batches of statements are supported.

• Batches of prepared statements are supported. Batches of prepared statements are
really useful for increasing performance when executing several INSERT, UPDATE
or DELETE statements.

• Batches of callable statements are supported.

• There are now setter and getter methods for CharacterStreams.

• Several new DatabaseMetaData methods.

• Support for the Mimer SQL statements ENTER and LEAVE.

New Functions in 1.9
Server data type NATIONAL CHARACTER LARGE OBJECT (NCLOB) is now supported.

Mimer JDBC 37
Driver Guide
New Functions in 1.7
• When working with a Mimer SQL version 9 server, the JDBC 1 driver now

supports the new version 9 data types (NCHAR, NCHAR VARYING, BINARY LARGE
OBJECTS, and CHARACTER LARGE OBJECT).

• The SQL statements ENTER and LEAVE are now supported.

New Functions in 1.2
Support for query timeout and cancel (connection timeout is not supported).

Changed Functions
This section describes the main changed functions of each Mimer JDBC version.

Changed Functions in 3.16, 2.16 and 1.16
• Changed type mapping for FLOAT(n)

Mimer SQL supports the datatype FLOAT(n) which can store a floating point
number with n digits of mantissa and an exponent ranging from -999 to 999.

This datatype was previously mapped to the Java type double (which only supports
exponents ranging from -308 to 308). This was problematic since some routines (in
particular getObject()) would fail for very large (or small) values in the database.

The FLOAT(n) data type is now mapped to java.math.BigDecimal. While not a
perfect match, this datatype can accurately represent all values that can be stored in
FLOAT(n) columns in the database.

Note that it is still possible to use the methods getDouble() and getFloat() on
FLOAT(n) data, but those methods will fail when the data is out of range for a Java
double (or float).

To store Java double and float values, consider using the Mimer datatype DOUBLE
PRECISION for Java double and the Mimer datatype REAL for Java float.

Note that the Mimer datatype FLOAT (without a precision) is synonymous to
DOUBLE PRECISION and is a bad match for the Java float type which is single
precision.

• Changed string representation for floating point data
The JDBC driver supports the getString() method on all Mimer floating point
columns. Previously this method padded the returned value with zeroes to its
declared precision (a FLOAT(15) could return "1.00000000000000"). This version
will not add those zeroes (getString() on the same value will return "1").

Changed Functions in 2.15 and 1.15
• Login failure now returns SQLSTATE 08004.

Previously login failure threw an SQLException with the SQLState 28000.
According to the SQL-2003 standard, this is incorrect, and has been corrected to
return 08004. The 08-class of SQLStates relates to error conditions during the
connect phase.

38 Appendix A Change History
Changed Functions
• Several error messages have been clarified
Error texts returned when a cast from a character column to something else now
more clearly state the failed cast. Note that this particular improvement applies to
client side casts only. For instance, this includes casts where an SQL parameter type
is INTEGER and its value is set using the PreparedStatement.setString
method.

The driver now displays an accurate error text when a connection attempt fails
because the application hasn't specified the database name, or it has specified an
empty database name.

When the application refers to a column name that does not exist in the result set,
the error text now includes existing columns names. To keep error texts reasonably
short, if this error occurs on a result set with many columns, only a selection of
column names. This situation is indicated with three consecutive periods in the error
text.

Errors returned from the Mimer TCP server (listening on port 1360 on behalf of
Mimer SQL servers) now include a descriptive text, previously only the error code
was displayed to the caller.

Changed Functions in 2.14 and 1.14
JDBC clients now present more detailed information to the servers about who it is, which
version it is and in which environment it is executing in. Future servers will provide tools
to monitor this information.

Changes in 2.14 and 1.14
• Changing autocommit mode always commits open transactions

Earlier on, the Mimer JDBC driver mimiced the ODBC behavior when autocommit
mode is changed. The ODBC spec says that open transactions should be
automatically committed when the autocommit mode goes from off to on. The
JDBC specification requires drivers to commit open transactions on all changes in
autocommit state. From version 14 onwards, the Mimer JDBC driver implements
this behavior.

An observant reader might question why this has any significance at all? After all,
when autocommit mode is on, we expect all statements to be committed
automatically anyway? The difference lies in how open result sets are treated. As
you may know, result sets are by default closed when transactions are committed.
In practice, running in autocommit mode means that transactions are committed
_as_soon_as_possible_. For instance, a statement returning a result set will typically
be committed when the application explicitly closes the result set, or if the result set
is forward-only when the entire set has been read. Changing the autocommit mode
during the life of the result set will now always trigger a commit which will close
the result set.

Mimer JDBC 39
Driver Guide
Changes in 2.9
The driver now returns the correct object type when doing
CallableStatement.getObject. According to the JDBC specification, getObject
should return a Java object whose type corresponds to what type the output parameter was
registered to with the CallableStatement.registerOutParameter method call.
Earlier drivers always returned the default Java object type.

Changes in 2.7
• All .getUnicodeStream on NCHAR columns no longer throw

IndexOutOfBoundsException.

• All .getCharacterStream returned incorrect results for NCHAR and NCHAR
VARYING columns. This problem is corrected.

• All .getAsciiStream, .getBinaryStream, and .getCharacterStream on
CHAR, CHAR VARYING, NCHAR, NCHAR VARYING, BINARY and BINARY VARYING
columns have been reworked to reduce memory footprint, and also to provide more
efficient .mark(), .reset(), and .skip() implementations.

Changes in 2.2
• Column names and labels are now regarded as equal. From an SQL standard point

of view, the column name should be hidden when a correlation name is specified.

• Both ResultSetMetaData.getColumnName and
ResultSetMetaData.getColumnLabel return the correlation name when one
is specified.

• Default network buffers have been reduced in size to increase server scalability.

Changes in 2.1
A Mimer SQL beta licence key is no longer required on the server.

Changes in 1.3
Statement.executeQuery no longer accepts non-query statements and
Statement.executeUpdate no longer accepts statements other than updates, inserts
or deletes.

Changes in 1.2
The name of the Mimer driver class is changed to com.mimer.jdbc.Driver (earlier
com.mimer.jdbc1.Driver).

40 Appendix A Change History
Corrected Problems
Corrected Problems
This section describes the main corrected functions of each Mimer JDBC version.

Correction in 3.20, 2.20 and 1.20
If the connection with the server was lost (or if the server is shut down), earlier JDBC
drivers could produce a null pointer exception in some circumstances. The new JDBC
driver will produce an appropriate SQLException.

Also, the method Connection.isClosed() will now return true on any connection
that has received an SQLException indicating that the connection with the server was
lost.

Correction in 3.19, 2.19 and 1.19
Version numbers for servers older than 9.3 was not returned properly by the Mimer JDBC
n.18 drivers. This problem was seen in DatabaseMetaData.getProductVersion,
DatabasMetaData.getDatabaseMajorVersion and
DatabaseMetaData.getDatabaseMinorVersion.

Corrections in 3.18, 2.18 and 1.18
• PreparedStatement.setString threw no exception on BOOLEAN data types

Version 17 JDBC drivers did never throw an exception if the application called
PreparedStatement.setString with an illegal string. That is, a string that is
not ’true’ or ’false’. This is corrected in version 18.

• LITERAL_SUFFIX and LITERAL_PREFIX for DATE, TIME, TIMESTAMP and
INTERVAL data types
Result sets returned by DatabaseMetaData.getTypeInfo did not contain any
data in the columns LITERAL_SUFFIX and LITERAL_PREFIX for data types
DATE, TIME, TIMESTAMP and all INTERVAL data types. From version 18,
these columns have a relevant value.

This correction applies for all server versions. Using an older JDBC driver against
a v9.3.5 Mimer SQL server or later will also return correct values for these columns.

• Changed behavior for protocol type tcp
Specifying the protocol TCP in the Mimer JDBC URL, would instruct the driver to
connect using the native TCP/IP-stack. From version 18, specifying the TCP
protocol makes the driver connect using the Java TCP/IP-stack.

The behavior when the protocol is unspecified has not been changed, that is, the
Java TCP/IP-stack is used.

Mimer JDBC 41
Driver Guide
Correction in 3.16, 2.16 and 1.16
• DatabaseMetaData.getColumns returns too many columns

Older versions of the Mimer JDBC driver returned, when calling
DatabaseMetaData.getColumns, duplicate rows for BINARY LARGE
OBJECT, CHARACTER LARGE OBJECT and NATIONAL CHARACTER
LARGE OBJECT columns. For example, querying a table with one CHARACTER
column and one BINARY LARGE OBJECT column returned a result set of three
rows. One row for the CHARACTER column, and two for the BINARY LARGE
OBJECT column. This is now corrected.

• DATE/TIME comparison problems
Previous drivers did not recognize TIMESTAMP’s representing a value prior to the
timestamp 1000-01-01 00:00:00, DATE values prior to the date 1000-01-01 and
TIME values prior to 10:00:00 correctly. Although the driver would retrieve and
display those values correctly, comparison operations may fail for identical values,
leading to potentially duplicate primary keys, or that query conditions may fail for
no obvious reason. These problems are now corrected.

Corrections in 2.14
• PreparedStatement batches whose size exactly matched the network buffer

size failed
Batches of PreparedStatements failed if data in the entire batch exactly matched the
amount of space available in the network buffer.

This could mean, for instance, that a batch of 19 rows would fail, while batches of
18 and 20 rows would succeed.

• Improved default connection values for MIDP drivers
The MIDP driver can only connect using the javax.sql.DataSource compliant
com.mimer.jdbc.MimerDataSource class. From version 14 onwards, MIDP
drivers default all values (host name, database name, port number) to those required
to connect to the local database 'db'. This is the default name of the local database
on Symbian devices.

Ident name and password must always be completed by the application.

Corrections in 2.14 and 1.14
• MIDP:Reduced network buffers

MIDP drivers has from the start only utilized network buffers of about 10 kb.
Unfortunately, at times the driver would allocate network buffers larger than
necessary. This is no longer the case. The programmer might influence the size of
the network buffer by using the ResultSet.setFetchSize function. If this
function is not called, the driver will use a fetch size corresponding to a size of about
10 kb.

42 Appendix A Change History
Corrected Problems
• Non-public constructor in the Driver-class made applications fail loading the
Mimer JDBC driver
Applications that don't rely on DriverManager.getConnection, or the
javax.sql.DataSource class, to create a Connection to Mimer, but instead are
creating a connection by using the Driver class couldn't load the
com.mimer.jdbc.Driver class of the 1.13 and 2.13 Mimer JDBC drivers. More
specifically, the following didn't work:
Class dc = Class.forName("com.mimer.jdbc.Driver");
Driver d = (Driver)dc.getInstance();

Example of products using this (or similar) techniques, and thus avoiding the
DriverManager object, are Sun Java Studio Creator and the Squirrel SQL
database viewer.

• Reading a BLOB stream might hang the connection
Reading Binary Large Objects through an InputStream (obtained through
ResultSet.getBinaryStream) would place the network connection in an
inconsistent state, in practice the session would hang, if the size of the object is
larger than the size of the default network packet size, and the application tries to
read the entire object in one call (InputStream.read(b,off,len) where len is
larger than the size of the object). This is no longer the case.

• Clarified error texts when streams are closed
The error texts saying that streams have been closed now explain why the stream
was closed. This could be of several reasons, the server connection went dead, the
transaction was committed or rolled back, the statement in which the result set
containing the stream was closed, and so forth. This is now explained in the error
message.

Corrections in 2.13 and 1.13
• Fetching data might throw an SQLException with vendor code 1

Fetching data (ResultSet.next) could erroneously throw SQLExceptions with
vendor code 1. This was wrong and is now corrected.

• Large BLOB problem
Whenever BLOB’s was read in several passes from the server, and the application
specified a length longer than the actual BLOB, the driver hanged. Many platforms
deliver TCP/IP packets in chunks of about 64 kb so this problem would occur when
reading BLOB’s larger than that. On smaller platforms, such as the Sony Ericsson
P800 mobile telephone, the problem is more evident since the MIDP environment
on that platform delivers TCP/IP packets in sizes of 512 bytes. This problem is now
corrected.

Corrections in 2.12 and 1.12
• The midjdbc2 driver now fully supports SQL DATE, TIME, and TIMESTAMP data

types.

Mimer JDBC 43
Driver Guide
• By mistake the Beta release (1.10/2.10) lacked support of the SQL constructs for
manipulating session and transaction characteristics, such as SET TRANSACTION
READ ONLY. These SQL statements are now supported, see the Mimer SQL
Reference Manual for more information.

• Scrollable cursors now take the value set by Statement.setFetchDirection
into account when selecting fetch strategy on scrollable result sets. This does not
apply to 1.12.

• A problem which caused a premature end of table when a scrollable cursor has
seen the end of the result set, is fetching backwards (using
ResultSet.previous) and the fetch size has been set to a value less than the
size of the result set. This problem did not apply to the JDBC 1 driver.

• When earlier versions did a ResultSet.afterLast or ResultSet.last after
setting Statement.maxRows to a value that actually limits the result set size, the
cursor was positioned on the wrong row, beyond the end of the result set. This is
now corrected.

Corrections in 2.11 and 1.11
• Previously an InputStream.skip(n) on a stream derived from a BLOB column,

or a CharacterStream.skip(n) on a stream derived from a CLOB or NCLOB
column may leave the network state out of sync. This was seen with the error
-22046 ’An internal error occurred in ReadFromServer’. This problem is now
corrected.

Note: For the JDBC 1 driver, this problem applies to streams derived from the
getUnicodeStream method call on CLOB and NCLOB columns.

• A problem with large SQL statements has been fixed. SQL statements larger than
about 20 000 characters were unable to compile because of an
ArrayIndexOutOfBoundsException.

Corrections in 2.10 and 1.10
• Previous versions of the driver did not return the correct data type on

CallableStatement.getObject calls. The specification states that the object
type returned should match whatever type was specified when the output parameter
was registered through the CallableStatement.registerOutParameter
call. Previously, the object type returned matched the data type on the server.

• When calling ResultSet.findColumn, ResultSet.getString(String)
and similar column name related methods, the Mimer driver previously did a case
sensitive search. This was incorrect. The search should be case insensitive, which it
now is.

• 2.8 and 1.8 versions of the Mimer JDBC driver introduced a problem setting
CHARACTER and CHARACTER VARYING columns via a CharacterStream object.
The end result lost characters without throwing errors. This is now corrected.

• A JDBC driver using a database server with many indexes could have performance
problems with the DatabaseMetaData.getSchemas call. This is now corrected
for 9.2-servers and later. Unfortunately, since the problem is server related, older
servers cannot easily be corrected.

44 Appendix A Change History
Corrected Problems
• JDBC drivers connecting to Mimer SQL 8.2 servers unexpectedly threw
SQLException exceptions when using DatabaseMetaData.getCatalogs or
DatabaseMetaData.getUDTs. This is now corrected. Note that neither of these
queries should return any rows with Mimer SQL 8.2 servers.

• java.sql.Blob and java.sql.Clob objects returned from calls to
ResultSet.getBlob and ResultSet.getClob now stay alive throughout the
entire transaction. Once the transaction in which the object is created is ended, all
calls to the objects will throw a ’transaction has ended’ exception. Previously, these
objects could not be used once the resultset was closed.

Corrections in 2.9
• Scrollable result sets returned an error when calling setFetchDirection. This is

no longer the case.

• ResultSet.getString did not return correct characters for å, ä, ö and similar
Latin-1 but non-ASCII characters when other default character encoding than
ISO 8859-1 was used. This included for instance Macintosh computers. This is
now corrected.

Corrections in 2.7
• Earlier versions incorrectly returned SQLSTATE 22001 for numeric value out of

range. The correct 22003 is now returned.

• Procedure calls with large output parameters (typically CHAR(100),
VARCHAR(100) or larger) could end with the following exception message:

An internal error occurred in MimConnection.readFromServer (packlen=148,
bufLen=100, maxReceive=0).

This problem is now corrected.

• Batches of statements were not cleared when being executed. This forced the
programmer to call Statement.clearBatch() before building another batch.
From now on, batches are automatically cleared after being executed.

Corrections in 2.6
Server resources was not released even when the application was properly closing
Statement, PreparedStatement and CallableStatement objects. This could
sometimes cause the following error when attempting to drop a table:

Error code: -16002, msg: Table locked by another cursor, state: S1000

This problem is now corrected.

Corrections in 2.2
• Correction of

DatabaseMetaData.supportsTransactionIsolationLevel(0) which
erroneously returned true.

• ResultSet.getConcurrency() and ResultSet.getType() returned wrong
values for scrollable cursors.

Mimer JDBC 45
Driver Guide
• DatabaseMetaData.getSystemFunctions() returned the nonexisting
USERNAME function.

• A ResultSet.fetchSize with a large number no longer throws an
ArrayIndexException.

• ResultSets created from a PreparedStatement or CallableStatement no
longer fails on the second .next call.

Corrections in 1.9
• ResultSet.getString did not return correct characters for å, ä, ö and similar

Latin-1 but non-ASCII characters when other default character encoding than
ISO 8859-1 was used. This included for instance Macintosh computers. This is
now corrected.

• The driver now returns the correct object type when doing
CallableStatement.getObject. According to the JDBC specification,
getObject should return a Java object whose type corresponds to what type the
output parameter was registered to with the
CallableStatement.registerOutParameter method call. Earlier drivers
always returned the default Java object type.

Corrections in 1.7
Earlier versions incorrectly returned SQLSTATE 22001 for numeric value out of range.
The correct 22003 is now returned.

Known Restrictions
• Mimer SQL Mobile does not support .mark() on .getBinaryStream,

.getAsciiStream and .getCharacterStream. Use Bufferedxxx manually.

• The following optional features described in the JDBC 2 specification are not yet
supported:

• Connection timeout

• Updatable ResultSets

• The java.sql.Blob.position and java.sql.Clob.position methods

• The java.sql.Array, java.sql.Ref, and java.sql.Struct objects
among with the getter and setter methods for the objects.

Known Problems
This section describes the known problems with Mimer JDBC.

46 Appendix A Change History
Known Problems
Update Counts on Errors in Batched Statements
Whenever an error occurs in a batched Statement, the driver is unable to return the correct
information about the number of executed rows. The correct behavior is to return an
integer array within a thrown BatchUpdateException object whose length
corresponds to the number of batch statements. The Mimer driver is now returning an
integer array with one entry per statement, with all entries set to 0.

Mimer JDBC 47
Driver Guide
Index
A
applet 20
Array Fetches 4

B
batch operations 4, 28
BOOLEAN 35

C
CallableStatements 4
CDC 5
CLASSPATH 9
CLDC/MID 5
commit mode 25
connection 10
connection pools 4, 13

D
DatabaseMetaData 4
DataSource 4, 13
DATE 7
distributed transactions 4, 13
DOUBLE PRECISION 6
Driver-class 4
DriverManager 10, 12, 17, 19

E
error handling 14

F
FetchSize 4
FLOAT 6

G
garbage collection 33

H
holdable cursor 32
holdable cursors 4

I
INTEGER 6
INTERVAL 33

J
J2EE 12, 13
J2ME 5
Java applet 20
Java Virtual Machine 1
JavaBean 4
JDBC

batch updates 25
callableStatement objects 28
connecting 9
cursors

positioning 31
error handling 14
executing 27
JDBC 2 25
loading 9
performance 29
preparedStatement objects 27
result sets 30

capabilities 32
scrolling 31

statement objects 27
transactions 25

auto-commit 25
manual-commit 26

updating data 32
JNDI 4, 13
JNDI repository 18
JVM 1

L
LOB 5
locking 25

48 Index
logging 7

M
midlet 5
Mimer SQL

connecting to 12

N
National character 4
NCLOB 35

P
performance 29, 34
prefetch 34
PreparedStatements 34
PSM 33

R
REAL 6
Result 30

S
scrollable cursors 31
Scrollable ResultSets 4
scrolling 31
security restriction 21
setFetchSize 5
setMaxRows 34
stored procedures 33

T
thread-safe 33
TIME 7
TIMESTAMP 7
trace driver 7
transaction 25
type 4 drivers 1

U
URL 10, 17, 19

X
XA 4, 13

	Driver Guide
	Contents
	Introduction
	About this Guide
	Definitions, Terms and Trademarks

	Available Drivers
	Requirements
	Environment
	Differences Between the Drivers
	About the JDBC Driver for J2ME/CDC (minjdbc3)
	About the JDBC Driver for Midlets (midjdbc3)
	Importing the JDBC Classes
	FLOAT and DOUBLE PRECISION
	DATE, TIME and TIMESTAMP

	Logging

	Using the Mimer JDBC Driver
	Loading a Driver
	Connecting the Traditional Way
	Connecting With URL
	URL Syntax

	Connecting the J2EE Way
	Deploying Mimer JDBC in JNDI
	Deploying Mimer JDBC in a Connection Pool
	Deploying Mimer JDBC in Distributed Transaction Environments

	Mimer JDBC/CDC Optional Package
	Sony Ericsson CDC Platform

	Error Handling
	The Class SQLException
	The Class SQLWarning

	Viewing Driver Characteristics
	The mimcomm JNI library
	Java Program Examples
	JDBC Application Example
	JDBC Application Example for J2EE
	Using the Driver from Applets
	Executing the Java Applet Example

	Mimer JDBC Midlet Example

	Programming With JDBC
	Examples in this Chapter
	Transaction Processing
	JDBC Transactions
	Auto-commit Mode
	Manual-commit Mode
	Setting the Transaction Isolation Level

	Executing an SQL Statement
	Using a Statement Object
	Using a PreparedStatement Object
	Using a CallableStatement Object

	Batch Update Operations
	Enhancing Performance

	Result Set Processing
	Scrolling in Result Sets
	Positioning the Cursor

	Result Set Capabilities
	Holdable cursors

	Updating Data
	Programming Considerations
	Interval Data
	Closing Objects
	Increasing Performance

	Change History
	New Functions
	New Functions in 3.18, 2.18 and 1.18
	New Functions in 3.17, 2.17 and 1.17
	New Functions in 3.16, 2.16 and 1.16
	New Functions in 3.15
	New Functions in 2.9
	New Functions in 2.8
	New Functions in 2.7
	New Functions in 2.5
	New Functions in 2.4
	New Functions in 2.3
	New Functions in 2.0
	New Functions in 1.9
	New Functions in 1.7
	New Functions in 1.2

	Changed Functions
	Changed Functions in 3.16, 2.16 and 1.16
	Changed Functions in 2.15 and 1.15
	Changed Functions in 2.14 and 1.14
	Changes in 2.14 and 1.14
	Changes in 2.9
	Changes in 2.7
	Changes in 2.2
	Changes in 2.1
	Changes in 1.3
	Changes in 1.2

	Corrected Problems
	Correction in 3.20, 2.20 and 1.20
	Correction in 3.19, 2.19 and 1.19
	Corrections in 3.18, 2.18 and 1.18
	Correction in 3.16, 2.16 and 1.16
	Corrections in 2.14
	Corrections in 2.14 and 1.14
	Corrections in 2.13 and 1.13
	Corrections in 2.12 and 1.12
	Corrections in 2.11 and 1.11
	Corrections in 2.10 and 1.10
	Corrections in 2.9
	Corrections in 2.7
	Corrections in 2.6
	Corrections in 2.2
	Corrections in 1.9
	Corrections in 1.7

	Known Restrictions
	Known Problems
	Update Counts on Errors in Batched Statements

	Index

