

 1

 ALisp v2 User’s Guide

Tore Risch
Uppsala Database Laboratory

Department of Information Technology
Uppsala University

Sweden

Tore.Risch@it.uu.se

2006-02-22

ALisp is an interpreter for a subset of CommonLisp built on top of the storage manager of the Amos II database
system. The storage manager in scalable end extensible, which allows data structures to grow very large gracefully
and dynamically without performance degradation. Its garbage collector is incremental and based on reference
counting techniques. This means that the system never needs to stop for storage reorganization and makes the
behaviour of ALisp very predictable. ALisp is written in ANSII C and is tightly connected with C. Thus Lisp data
structures can be shared and exchanged with C programs without data copying and there are primitives to call C
functions from ALisp and vice versa. The storage manager is extensible so that new C or Lisp based data structures
can be introduced to the system. ALisp runs under Windows and Linux. It is delivered as an executable and a C
library which makes it easy to embed ALisp in other systems.

This report documents how to use the ALisp system.

 2

Table of contents

1. Introduction... 4
2. Starting ALisp... 4
3. Basic Primitives .. 5

3.1. Data types.. 6
3.2. Symbols... 6

3.2.1. Defining functions .. 7
3.2.2. Binding variables .. 8
3.2.3. Symbol manipulation.. 10

3.3. Lists... 11
3.3.1. Destructive list functions .. 13

3.4. Strings ... 14
3.5. Numbers.. 15
3.6. Logical Functions.. 16
3.7. Arrays.. 17
3.8. Hash Tables... 19
3.9. Main memory B-trees ... 20
3.10. Functional arguments and dynamic forms.. 21

3.10.1. Closures... 21
3.10.2. Applying functions with variable arity ... 22
3.10.3. Dynamic evaluation .. 23
3.10.4. System functions for run-time evaluation... 23

3.11. Map functions ... 23
3.12. Control Structures ... 25

3.12.1. Compound expressions ... 25
3.12.2. Conditional expressions .. 25
3.12.3. Iterative statements ... 27
3.12.4. Non-local returns .. 27

3.13. Macros... 28
3.14. Defining structures.. 30
3.15. Miscellaneous functions.. 31
3.16. Hooks .. 32

4. Time Functions ... 33
4.1. System clock ... 33
4.2. Absolute Time Values... 34
4.3. Relative time values.. 34
4.4. Relative Date Values... 35

5. Input and Output ... 35
5.1. File I/O.. 36
5.2. Text streams.. 37
5.3. Sockets .. 38

5.3.1. Point to point communication... 38
5.3.2. Remote evaluation .. 39

6. Error handling ... 40
6.1. Trapping exceptions.. 41

 3

6.2. Raising errors .. 41
6.3. User interrupts... 42
6.4. Error management functions... 42

7. Lisp Debugging... 43
7.1. The break loop .. 43
7.2. Breaking functions .. 45

7.2.1. Conditional break points ... 46
7.3. Tracing functions .. 46
7.4. Profiling .. 47

7.4.1. The Statistical Profiler .. 47
7.4.2. The Wrapping Profiler .. 48

7.5. System functions for debugging ... 49
8. Code search and analysis .. 51

8.1. Emacs subsystem .. 51
8.2. Finding source code .. 51
8.3. Code verification... 53

9. The Storage Manager.. 54
9.1. Handles ... 54
9.2. Physical Objects.. 54
9.3. Logical Data Objects... 55
9.4. Dereferencing.. 55
9.5. Assigning handles to locations.. 56
9.6. Allocating physical objects. .. 57
9.7. Storage types... 59
9.8. Streams.. 60

9.8.1. Marshalling objects... 61
10. Interfacing Lisp with C ... 62

10.1. Calling C from Lisp .. 62
10.1.1. Defining external Lisp functions in C... 63
10.1.2. Variable arity external Lisp functions... 65
10.1.3. Defining special forms.. 66

10.2. Error management in C... 67
10.2.1. Unwind Protection .. 67
10.2.2. Raising errors. ... 68

10.3. Calling Lisp from C .. 69
10.3.1. Direct C calls... 70

10.4. C functions for debugging .. 71
10.5. Interrupt handling.. 72

 4

1. Introduction
ALisp is a small but scalable Lisp interpreter that has been developed with the aim of being embedded in other
systems. It is therefore tightly interfaced with ANSII C and can share data structures and code with C. ALisp
supports a subset of CommonLisp and conforms to the CommonLisp standard when possible. However, it is not a
full CommonLisp implementation, but rather such constructs are not implemented that are felt not being critical and
difficult to implement efficiently. These restrictions make ALisp relatively small and light-weight, which is
important when embedding it in other systems.

ALisp was designed to be embedded in the Amos II object-relational database kernel [2]. However, ALisp is a
general system and can be used for many other applications as well. Because it is used in a database kernel it is very
important that its storage manager is efficient and scales well. Thus all data structures are dynamic and can grow
without performance degradation. The data structures grow gracefully so that there are never any significant delays
for data reorganization, garbage collection, or data copying. (Except that the OS might sometimes do this, outside
the control of ALisp). There are no limitations on how large the data area can grow, except OS address space
limitations and the size of the virtual memory backing file. The performance is of course dependent on the size of
the available main memory and thrashing may occur when the amount of memory used by ALisp is larger than the
main memory.

A critical component in a Lisp system is its garbage collector. Lisp programs often generate large amounts of
temporary data areas that need to be reclaimed by garbage collection. Furthermore, as ALisp was designed to be
used in a DBMS kernel it is essential that the garbage collection is predictable, i.e. it is not acceptable if the system
would stop for garbage collection now and then. The garbage collector must therefore be incremental and
continuously reclaim freed storage. Another requirement for ALisp is that it can share data structures with C, in
order to be tightly embedded in other systems. Therefore, unlike many other implementations of Lisp (SmallTalk,
Java, etc.) systems, both C and Lisp data structures are allocated in the same memory area and there is no need for
expensive copying of large data areas between C and Lisp. This is essential for a predictable interface between C
and Lisp, in particular if it is going to be used for managing large database objects as in ALisp’s main application.

Section 2 describes the system functions in ALisp. The differences w.r.t. CommonLisp are documented. Section 3
gives an overview of the debugging facilities, while Section 4 describes the error handling mechanisms. Section 5
describes the I/O system and Section 6 overviews the storage manager interfaces.

2. Starting ALisp

ALisp is a subsystem of Amos II [2]. Amos II is started with the OS command:

 amos2

The same directory as where Amos II is started must have a database image file with a system Amos II database:

 amos2.dmp

When Amos II is started it is in AmosQL mode where it accepts and evaluates AmosQL commands from the
console. To enter Lisp mode from the AmosQL top loop, give the AmosQL command:

 lisp;

When in Lisp mode the system reads S-expressions, evaluates them, and prints the results from the evaluation, for
example:

 5

> (setq a '(a b c))
WARNING! Setting undeclared global variable: A
(A B C)
> (reverse a)
(C B A)
> (defun foo (x)(+ 1 a))
Undeclared free variable A in FOO
FOO
>

As you can see, ALisp warns the user when it encounters forms that may contain errors. If you make an error ALisp
will enter a break loop where the error can be investigated. The simplest thing to do is to enter :r to reset the error.
For example:

> your-age
Error 1, Unbound variable: YOUR-AGE
When evaluating: YOUR-AGE
(FAULTEVAL BROKEN)
In *BOTTOM* brk>:r
>

See Sec. 7.1 for documentation of all break loop commands.

The recommended way to learn about ALisp is to run a CommonLisp tutorial, e.g.
http://mypage.iu.edu/~colallen/lp/. Notice that ALisp is a subset of CommonLisp so not all exercises there are
applicable, in particular CommonLisp FORMAT function is replaced with a simplified FORMATL (Sec. 5) and
arrays (Sec. 3.7) are one-dimensional.

To go back to AmosQL mode from Lisp mode, enter the keyword:

 :osql

All Lisp code and data is stored inside the database image which is a dynamic main memory area. The image can be
saved on disk with the ALisp function:

 (rollout filename)

which is equivalent to the AmosQL command:

 save "filename";

To later connect Amos II to a previously saved image, issue the OS command:

 amos2 filename

3. Basic Primitives

This section describes the basic Lisp data types and the functions operating over them.

The CommonLisp standard functions are defined in [1]. Significant differences between an ALisp function and the
corresponding CommonLisp function are described in the function descriptions in this document.

 6

3.1. Data types

Every object in ALisp belongs to exactly one data type. There is a system provided type tag stored with each object
that identifies its data type. Each data type has an associated type name as a symbol. The symbolic name of the data
type of an ALisp object O can be accessed with the ALisp function:

(TYPENAME O)

ALisp provides a set of built-in basic data types. However, through its C-interface ALisp can be in addition
extended with new datatypes implemented in C. The system tightly interoperates with C so that i) data structures can
be shared between C and ALisp (Sec. 8), ii) the ALisp garbage collector is available in C (Sec. 8), iii) ALisp can
call functions implemented in C (Sec. 10.1.1), iv) ALisp functions can be called from C (Sec 10.3), and v) C can
utilize ALisp’s error management (Sec. 6 and 10.2).

3.2. Symbols

A symbol (data type name SYMBOL) is a unique text string with which various system data can be associated.
Symbols are used for representing functions, macros, variables and property lists. Functions and macros represent
executable ALisp code, variables bind symbols to values, and property lists associate data values with properties of
symbols. Symbols are unique and the system maintains a hash table of all symbols. Symbols are not garbage
collected and their locations in the dataase image never change. It is therefore not advisable to make programs that
generate unlimited amounts of symbols. Symbols are mainly used for storing system data (such as programs) while
other data structures, e.g. hash tables, arrays, lists, etc. are used for storing user data. Symbols are always internally
represented in upper case and symbols entered in lower case are always internally capitalized by the system.

The special system symbol NIL represents both the empty list and the truth value false. All other values are regarded
as having the truth value true.

Each symbol has the following associated data:

The print name is a string representing the symbol. The print name of a symbol can be accessed by the function
MKSTRING. For example:

 > (mkstring 'banana)
 "BANANA"

1. Symbols represent variables and bind them to values. The global value of a symbol (Sec. 3.2.1) binds it to a
global value. Most values are local and bound on a variable binding stack maintained by the system when
functions are called or code blocks entered.

2. Each symbol nm has an associated function cell where the ALisp function definition for the function named
nm is stored. The function cell of a Lisp symbol nm is retrieved with the CommonLisp function
(SYMBOL-FUNCTION nm) that returns the function definition of nm if there is one; otherwise it returns
nil. A function definition can be one of the following:

i) A lambda function which is a function defined in Lisp (Sec. 3.2.1). A lambda function definition is
represented as a list, (LAMBDA args . body). It is defined by the system special function DEFUN,
e.g.:

 > (defun rev (x)(cons (cdr x)(car x)))

 7

 REV
 > (rev '(1 2))
 ((2) . 1)

ii) A macro (Sec.3.13) is defined by the system special function DEFMACRO. A macro is a Lisp
function that takes as its argument a form and produces a new equivalent form. Many system functions
are defined as macros. They are Lisp’s rewrite rules.

iii) An external Lisp function is implemented in C (Sec. 10.1). A external Lisp function is represented by a
special data type named EXTFN and printed as #[EXTFNn fn], where n is the arity of the function and
fn is its name. E.g. the definition of CONS is printed as #[EXTFN2 CONS]. The EXTFN data
structure contains a pointer to the C definition. For example:

 > (symbol-function 'car)
 #[EXTFN1 CAR]

iv) A variable arity external Lisp function can take a variable number of actual arguments. It definition is
printed as #[EXTFN-1 fn]. For example:

 > (symbol-function 'list)
 #[EXTFN-1 LIST]

v) A special form is a external Lisp functions with varying number of arguments and where the
arguments are not evaluated the standard way. Special forms are printed as #[EXTFN-2 fn]. For
example:

 > (symbol-function 'quote)
 #[EXTFN-2 QUOTE]

3. The property list (Sec 3.2.3) associates property values with the symbol and other symbols called property
indicators.

In function descriptions of this document X... indicates that the expression X can be repeated. Described functions
that are similar or equivalent to standard CommonLisp functions are marked with a ’*’ under Type. The Type of a
function can be EXTFN (defined in C), SPECIAL (special form), LAMBDA (defined in Lisp), or MACRO (Lisp
macro) (Sec. 3.13). A system variable can be either SPECIAL (dynamically scoped) or GLOBAL (Sec. 3.2.2).

3.2.1. Defining functions

This section describes the system functions to define and manipulate Lisp functions.

Function Type Description

(DEFC FN DEF) EXTFN Associate the function definition DEF with the atom FN. Same as

SYMBOL-SETFUNCTION.
(DEFUN FN ARGS FORM...) *SPECIAL Define a new Lisp function.
(EXTFNP X) LAMBDA Return T if X is a function defined in C.
(FLET ((FN DEF)...) FORM...) *MACRO Bind local function definitions and evaluate the forms FORM...
(GETD X) EXTFN Get function definition of atom NM. Same as SYMBOL-

FUNCTION
(LAMBDAP X) LAMBDA Return T if X is a lambda expression.

 8

(MOVD F1 F2) EXTFN Make F2 have the same function or macro definition as F1.
(SYMBOL-FUNCTION S)
 *EXTFN Get the function definition associated with the symbol S. Same as

GETD.
(SYMBOL-SETFUNCTION S D)
 EXTFN Set the function definition of symbol S to D. Same as DEFC.

3.2.2. Binding variables

Symbols hold variable bindings. Variables bindings can be either global or bound locally inside a Lisp function or a
code block. Local variables are bound when defined as formal parameters of functions or when locally introduced
when a new code block is defined using LET or other variable binding expressions. Both local and global variables
can be (re)assigned using the special system function SETQ.

In ALisp global variables should be declared before they are used, using the system macro DEFGLOBAL. ALisp
gives warnings when setting undeclared global variables or using them in functions. There are a number of built-in
global variables that store various system information and system objects.

For example:

> (setq x 1)
WARNING! Setting undeclared global variable: X because X is undeclared
1
lisp 1> (defglobal _g_) declare _G_ as global
NIL
lisp 1> (setq _g_ 1) assign number 1 to _G_
1
lisp 1> _g_ evaluate _G_
1
lisp 1> (let ((_g_ 3)) New block where local variable _G_ initalized to 3
 g) Value of local variable _G_ returned from block
3
lisp 1> _g_
1 Global value did not change

LET defines a new code block with new variables. For example:

> (let ((x 1) Local X initialized to 1
 Y Local Y initialized to NIL
 (z 2)) Local Z initialized to 2
 (list x y z)) Return list of the local variables
(1 NIL 2)

Unlike most programming languages, global Lisp variables can also be dynamically scoped so that they are rebound
when a code block is entered and restored back to their old values when the code block is exited [1]. In
CommonLisp dynamically scoped variables are declared using the special system function DEFVAR. Dynamically
scoped variables provide a controlled way to handle global variables as they are restored as local variables are when
a code block is exited. Usually dynamically scoped variables have ‘*’ as first character. For example, assume we
have a package to do trigonometric computations using radians, degrees, or new degrees:

> (defvar *angle-unit* 1) Units in radians to measure angles
ANGLE-UNIT

 9

> (defun mysin(x)(sin (* x *angle-unit*)))
MYSIN
> (defun hl (ang x)(/ x (mysin ang)))
HL
> (hl 0.785398 10) Compute length of hypotenuse using radians
14.1421
> (setq *angle-unit* (/ 3.1415926 180)) Let’s use degrees instead
0.0174533
> (hl 45 10)
14.1421
> (setq *angle-unit* (/ 3.1415926 200)) Let’s use new degrees instead
0.015708
> (hl 50 10)
14.1421

Now suppose we want to have a special version of HL that computes the hypotenuse only for regular degrees:

> (defun hyplen (ang x)
 (let ((*angle-unit* (/ 3.1415926 180))) Rebind *angle-unit* inside HL
 (hl ang x)))
HYPLEN
> (hyplen 45 10) Using degrees inside HYPLEN
14.1421
> (hl 50 10)
14.1421 Restored back to new degrees outside HYPLEN

The following system functions handle variable bindings.

Function Type Description

(BOUNDP VAR) *EXTFN Return T if the variable VAR is bound. Unlike CommonLisp,

BOUNDP works not only for special and global variables but also
for local variables.

(DEFGLOBAL VAR &optional VAL
 MACRO Declare VAR to be a global variable with optional initial value

VAL. Unlike dynamically scoped variables global variables are not
temporarily reset locally with LET/LET*. They are much faster to
look up than dynamically scoped variables (see DEFVAR).

(DEFVAR VAR &optional VAL) *SPECIAL Declare VAR to be a special variable with optional initial value
VAL. Special variables are dynamically scoped. See also
DEFGLOBAL.

(GLOBAL-VARIABLE-P VAR) LAMBDA Return true if VAR is declared to be a global variable.
(LET ((VAR INIT)...) FORM...) *MACRO Bind local variables VAR to initial values INIT in parallel and

evaluate the forms FORM.... Instead of a pair the binding can also
be just a variable, binding the variable to NIL.

(LET* ((VAR INIT)...) FORM...) *MACRO As LET but local variables are initialized in sequence.
(PROG-LET ((VAR INIT...)...) FORM...)
 MACRO As LET but if (RETURN V) is called in FORM... then PROG-LET

will exit with the value V. The classical PROG and GO are NOT
implemented in ALisp. The most common use of PROG is as a LET

 10

with a RETURN, which is supported by PROG-LET.
(PROG-LET* ((VAR INIT...)...) FORM...)
 MACRO This function is similar to PROG-LET, but binds the local variables

sequentially like LET*.
(QUOTE X) *SPECIAL Return X unevaluated.
(RESETVAR VAR VAL FORM...) MACRO Temporarily reset global value of VAR to VAL while evaluating

FORM... The value of the last evaluated form is returned. After the
evaluation VAR is reset to its old global value. This is similar to
declaring VAR being special with DEFVAR as specified by the
CommonLisp standard. DEFVAR should normally be used.

(SET VAR VAL) *EXTFN Bind the value of the value of VAR to VAL. This function is
normally not used; the normal function to set variable values is
SETQ that does not evaluate its first argument.

(SETQ VAR VAL) *SPECIAL Change the value of the unevaluated variable VAR to VAL.
(SPECIAL-VARIABLE-P V) *EXTFN Return T if the variable V is declared as special with DEFVAR.
(SYMBOL-VALUE S) *EXTFN Get the global value of the symbol S. Returns the symbol

NOBIND if no global value is assigned.

3.2.3. Symbol manipulation

The following system functions do other operations on symbols than handling variable bindings, e.g. managing
property lists, testing different kinds of symbols, or converting them to other data types.

A property list is represented as a list with an even number of elements where every second element are property
indicators and every succeeding element represents the corresponding property value. Property lists are often used
for associating system information with symbols and can also be used for storing user data. However, notice that, as
atoms are not garbage collected, dynamic databases should not be represented with property lists. The Lisp function
GET is used for accessing property lists (Sec. 3.2.3).

 Function Type Description

(ADDPROP S I V FLG) EXTFN Add a new value V to the list stored on the property I of the symbol

S. If FLG = NIL the new value is added to the end of the old value,
otherwise it is added to the beginning.

(EXPLODE S) EXTFN Unpack a symbol S into a list of single character symbols. Symbols
are exploded into symbols and strings into strings. For example:
(EXPLODE ’ABC) => (A B C)
(EXPLODE "abc") => ("a" "b" "c"))

(GENSYM) *LAMBDA Generate new symbols named G:1, G:2, etc.
(GET S I) *EXTFN Get the property value of symbol S having the indicator I.
(GETPROP S I) EXTFN Same as GET.
(KEYWORDP X) *EXTFN Return T if X is a keyword (i.e. symbol starting with ’:’).
(KEYWORD-TO-ATOM X) EXTFN Convert a keyword X into a regular symbol without the ’:’.
(MKSYMBOL X) EXTFN Coerce a string to a symbol. The characters of X will be capitalized.
(PACK X...) LAMBDA Pack the arguments X... into a new symbol.
(PACKLIST L) LAMBDA Pack the elements of the list L into a new symbol.
(PUT S I V) *EXTFN Set the value stored on the property list of the symbol S under the

indicator I to V. Same as (SETF (GET S I) V).

 11

(PUTPROP A I V) EXTFN Same as PUT.
(REMPROP S I) *EXTFN Remove property stored for the indicator I in the property list of

symbol S.
(SYMBOL-PLIST S) *EXTFN Get the entire property list of the symbol S.
(SYMBOLP X) *EXTFN Return true if X is a symbol.

3.3. Lists

Lists (data type name LIST) represent list structures as binary trees. There are many system functions for
manipulating lists. Two classical Lisp functions are CAR to get the head of a list, and CDR to get the tail. For
example:

> (setq xx '(a b c))
(A B C)
> (car xx)
A
> (cdr xx)
(B C)
>

Function Type Description

(ADJOIN X L) *EXTFN Similar to (CONS X L) but does not add X if it is already member

of L (tests with EQUAL).
(ANDIFY L) LAMBDA Make an AND form of the forms in L.
(APPEND L...) *MACRO Make a copy of the concatenated lists L... (APPEND X) copies the

top level elements of the list X.
(APPEND2 X Y) EXTFN Append two lists X and Y.
(ASSOC X ALI) *EXTFN Search association list ALI for a pair (X .Y). Tests with EQUAL.
(ASSQ X ALI) EXTFN Similar to ASSOC but tests with EQ.
(ATOM X) *EXTFN True if X is not a list or if it is NIL.
(BUILDL L X) LAMBDA Build a list of same length as L whose elements are all the same X.
(BUILDN N X) LAMBDA Build a list of length N whose elements all are all the same X:
(BUTLAST L) *EXTFN Return a copy of list L minus its last element.
(CAAAR X) *EXTFN (CAR (CAR (CAR X)))
(CAADR X) *EXTFN (CAR (CAR (CDR X)))
(CAAR X) *EXTFN (CAR (CAR X))
(CADAR X) *EXTFN (CAR (CDR (CAR X)))
(CADDR X) *EXTFN (CAR (CDR (CDR X))), same as (THIRD X)
(CADR X) *EXTFN (CAR (CDR X)), same as (SECOND X)
(CAR X) *EXTFN Return the head of the list X, same as (FIRST X).
(CDAAR X) *EXTFN (CDR (CAR (CAR X)))
(CDADR X) *EXTFN (CDR (CAR (CDR X)))
(CDAR X) *EXTFN (CDR (CAR X))
(CDDAR X) *EXTFN (CDR (CDR (CAR X)))
(CDDDDR X) *LAMBDA (CDR (CDR (CDR (CDR X))))

 12

(CDDDR X) *EXTFN (CDR (CDR (CDR X)))
(CDDR X) *EXTFN (CDR (CDR X))
(CDR X) *EXTFN Return the tail of the list X, same as (REST X).
(CONS X Y) *EXTFN Construct new list cell.
(CONSP X) *EXTFN Test if X is a list cell.
(COPY-TREE L)
 *EXTFN Make a copy of all levels in list structure. To copy the top level

only, use (APPEND L).
(EIGHT L) *LAMBDA Get the eight element from list L.
(FIFTH L) *LAMBDA Get fifth element in list L.
(FIRST L) *EXTFN Get first element in list L. Same as (CAR L).
(FIRSTN N L) LAMBDA Return a new list consisting of the first N elements in the list L.
(FOURTH L) *LAMBDA Get fourth element in list L.
(GETF L I) *EXTFN Get value stored under the indicator I in the property list L.
(IN X L) EXTFN IN returns T if there is some substructure in L that is EQ to X.
(INTERSECTION X Y) *EXTFN Build a list of the elements occurring in both the lists X and Y.

Tests with EQUAL.
(INTERSECTIONL L) LAMBDA Make the intersection of the lists in list L.
(LAST L) *EXTFN Return the last tail of the list L. E.g.
 (LAST ’(1 2 3)) => (3)
(LDIFF L TL) *LAMBDA Make copy of L up to, but not including, its tail TL.
(LENGTH X) *EXTFN Compute the number of elements in a list, the number of characters

in a string, or the size of a vector.
(LIST X...) *EXTFN Make a list with the elements X...
(LIST* X...) *EXTFN Is similar to LIST except that the last argument is used as the end of

the list.
For example:
(LIST* 1 2 3) => (1 2 . 3)
(LIST* 1 2 ’(A)) => (1 2 A)

(LISTP X) *EXTFN This function returns true if X is a list cell or NIL.
(LOCATEPOS L POSL) LAMBDA Select the substructure in L specified by the position chain POSL.

For example:
 (LOCATEPOS ’(A (B (C))) ’(1 1 0)) => C
(MEMBER X L) *EXTFN Tests if element X is member of list L, Tests with EQUAL. Returns

the tail of L where X is found first. For example:
(MEMBER 1.2 ’(1 1.2 1.2 3)) => (1.2 1.2 3)

(MEMQ X L) EXTFN as MEMBER but tests with EQ instead of EQUAL.
(MERGE A B FN) *LAMBDA Merge the two lists A and B with FN as comparison function.

For example:
 (MERGE ’(1 3) ’(2 4) (function <)) => (1 2 3 4)
(MKLIST X) EXTFN X is returned if it is NIL or a list. Otherwise (LIST X) is returned.
(NATOM X) *EXTFN Return T if X is not an atom and not NIL. Anything not being a list

is an atom.
(NINTH L) *LAMBDA Get ninth element in list L.
(NTH N L) *EXTFN Get the Nth element of the list L with enumeration starting at 0.
(NTHCDR N L) *EXTFN Get the Nth tail of the list L with enumeration starting at 0.
(NULL X) *EXTFN True if X is NIL.

 13

(PAIR X Y) EXTFN Same as PAIRLIS.
(PAIRLIS X Y) *EXTFN Form an association list by pairing the elements of the lists X and

Y.
(POP L) *SPECIAL Same as (SETQ L (CDR L)).
(PUSH X VAR) *MACRO Add X to the front of the list bound to the variable VAR, same as

(SETQ VAR (CONS X VAR)).
(PUTF L I V) EXTFN Set the value of the indicator I on the property list L to V.
(RECONS X Y L) LAMBDA Similar to (CONS X Y) but if the result object has the same head

and tail as L then L is returned. Useful for avoiding to copy
substructures.

(REMOVE X L) *EXTFN Remove all occurrences of X from the list L. Tests with EQUAL.
(REST L) *LAMBDA Same as CDR.
(REVERSE L) *EXTFN Return a new list whose elements are the reverse of the top level of

L.
(SECOND L) *EXTFN Get second element in list L. Same as CADR.
(SET-DIFFERENCE X Y) *EXTFN Return a list of the elements in X which are not member of the list

Y. Tests with EQ.
(SEVENTH L) *LAMBDA Get the seventh element of the list L.
(SIXTH L) *LAMBDA Get the sixth element of the list L.
(SORT L FN) *LAMBDA Sort the elements in the list L using FN as comparison function.
(SUBLIS ALI L) *EXTFN Substitute elements in the list structure L as specified by the

association list ALI that has the format ((FROM . TO)...).
For example:
(SUBLIS ’((A . 1)(B . 2)) ’((A) B A)) => ((1) 2 1)

(SUBPAIR FROM TO L) EXTFN Substitute elements in the list L as specified by the two lists FROM
and TO. Each element in FROM is substituted with the
corresponding element in TO. For example:
(SUBPAIR ’(A B) ’(1 2) ’((A) B A)) => ((1) 2 1)

(SUBSETP X Y) *LAMBDA Return true if every element in the list X also occurs in the list Y.
(SUBST TO FROM L) *EXTFN Substitute FROM with TO in the list structure L. Tests with

EQUAL. For example:
(SUBST ’1 ’A ’((A) B A)) => ((1) B 1)

(TENTH L) *LAMBDA Get the tenth element in the list L.
(THIRD L) *EXTFN Get the third element of the list L. Same as CADDR.
(UNION X Y) *EXTFN Construct a list of the elements occurring in both the lists X and Y.

Tests with EQ.
(UNIONL L) LAMBDA Construct a list of the elements occurring in all the elements of the

list of lists L.
(UNIQUE L) EXTFN Remove all duplicate elements in the list L. Tests with EQUAL

3.3.1. Destructive list functions

The list functions introduced so far are constructing new lists out of other objects. For example, (APPEND X Y)
makes a new list by copying the list X and then concatenating the copied list with the list Y. The old X is removed
by the garbage collector if no longer needed. If X is long APPEND will generate quite a lot of garbage. This is not
very serious because ALisp has a very efficient garbage collector that immediately discards no longer used objects.
However, sometimes one needs to actually modify list structures by replacing pointers. One may wish to do so for
efficiency reasons as, after all, the generation of garbage has its cost. Another reason is that some data structures
maintained as lists are updated. Therefore Lisp has a number of destructive list manipulating functions that replace

 14

pointers rather than extensively copying lists. Notice that such destructive functions may cause bugs that are difficult
to find. Therefore destructive functions should be avoided if possible. As an example of a destructive list, the
function (RPLACA X Y) replaces (CAR X) with Y. For example:

> (setq a '(1 2 3 4))
(1 2 3 4)
> (rplaca (cddr a) 8) Replace (CAR (CDDR X)) with 8
(8 4)
> a The list held in A has changed
(1 2 8 4)
> (rplaca a a) This makes a circular list. Don’t do this!
(((((((((((((((((((((((((((That makes the printer loop! (use CTRL-C)

CommonLisp makes it very easy to make destructive list operations using SETF [1]. ALisp does not support such
SETF on lists to not encourage destructive list operations.

The following destructive system list functions are supported:

Function Type Description

(ATTACH X L) EXTFN Similar to (CONS X L) but destructive, i.e. the head of the list L is

modified so that all pointers to L will point to the extended list after
the attachment. This does not work if L is not a list, in which case
ATTACH works like CONS.

(DELETE X L) *EXTFN Remove destructively the elements in the list L that are EQ to X.
Value is the updated L. If X is the only remaining element in L the
operation is not destructive and NIL is returned.

(DMERGE X Y FN) LAMBDA Merge lists X and Y destructively with FN as comparison function.
For example:
(DMERGE ’(1 3 5) ’(2 4 6) #’<) => (1 2 3 4 5 6)
The value is the merged list; the merged lists are destroyed. See also
MERGE.

(NCONC L...) *MACRO Destructively concatenate the lists L... (destructive APPEND) and
return the concatenated list.

(NCONC1 L X) EXTFN Add X to the end of L destructively, i.e. same as
(NCONC L (LIST X))

(NREVERSE L) *EXTFN Destructively reverse the list L. The value is the reversed list. L will
be destroyed. Very fast reverse.

(RPLACA L X) *EXTFN Destructively replace the head of list L with X.
(RPLACD L X) *EXTFN Destructively replace the tail of list L with X.
(SMASH X Y) LAMBDA Replace destructively the list X with the list Y.

3.4. Strings

Strings (data type name STRING) represent text strings of arbitrary length. Strings containing the characters “ or \
must precede these with the escape character, \. Examples of strings:

 15

> (setq a "This is a string")
"This is a string"
> (setq b "String with string delimiter \" and the escape character \\")
"String with string delimiter \" and the escape character \\"
> (concat a b)
"This is a stringString with string delimiter \" and the escape character \\"
>

Function Type Description

(CONCAT STR...) EXTFN Coerce the arguments STR... to strings and concatenate them.
(INT-CHAR X) *EXTFN If possible, return the character string with the encoding integer X,

otherwise return NIL. Unlike CommonLisp there is no special data
type for characters in ALisp and instead a string with a single
character is used.

(MKSTRING X) EXTFN Coerce an atom to a string.
(STRING-DOWNCASE STR) *EXTFN Change all ASCII characters in string STR into lower case.
(STRING-UPCASE STR) *EXTFN Change all ASCII characters in the string STR to upper case.
(STRING< S1 S2) *EXTFN Return true if the string S1 alphabetically precedes S2.
(STRING= S1 S2) *EXTFN Return true if the strings S1 and S2 are the same. EQUAL works

too.
(STRING-LIKE PAT S) EXTFN Returns true if PAT matches string S. PAT is regular expression

where:
 * matches any sequence of characters (zero or more)
 ? matches any character
 [SET] matches any character in the specified set,
 [!SET] or [^SET] matches any character not in the specified set.
(STRINGP X) *EXTFN Return true if X is a string.

3.5. Numbers

Numbers represent numeric values. Numeric values can either be integers (data type name INTEGER) or double
precision floating point numbers (data type name REAL). Integers are entered to the Lisp reader as an optional sign
followed by a sequence of digits, e.g.

1234 -1234 +1234

Examples of legal floating point numbers:

1.1 1.0 1. -1. -2.1 +2.3 1.2E3 1.e4 -1.2e-20

The following system functions operate on numbers.

Function Type Description

(+ X...) *EXTFN Add the numbers X...
(- X Y) *LAMBDA Subtract Y from X.

 16

(1+ X) *MACRO Add one to X which can be both integer and real.
(1++ X) MACRO Increment the variable X.
(1- X) *MACRO Subtract one from X which can be both integer and real.
(1-- X) MACRO Decrement the variable X.
(* X...) *EXTFN Multiply the numbers X...
(/ X Y) *EXTFN Divide X with Y.
(ACOS X) *EXTFN Compute arc cosine of X.
(ASIN X) *EXTFN Compute arc sine of X.
(ATAN X) *EXTFN Compute arc tangent of X.
(COS X) *EXTFN Compute cosine.
(CEILING X) *EXTFN Compute ceiling of X.
(EXP X) *EXTFN Exponent eX
(EXPT X Y) *EXTFN Compute exponent XY.
(FLOOR X) *EXTFN Compute largest integer <= X.
(INTEGERP X) *EXTFN True if X is an integer.
(LOG X) *EXTFN Compute natural logarithm of X..
(MAX X…) *EXTFN Return the largest of the numbers X….
(MIN X…) *EXTFN Return the smallest of the numbers X….
(MINUS X) *EXTFN Negate the number X.
(MOD X Y) *EXTFN Return the remainder when dividing X with Y. X and Y can be

integers or floating point numbers.
(NUMBERP X) *EXTFN True if X is number.
(RANDOM N) *EXTFN Generate a random integer between 0 and N.
(ROUND X) *EXTFN Round X.
(SQRT X) *EXTFN Compute the square root of the number X.
(SIN X) *EXTFN Compute sinus.
(TAN X) *EXTFN Compute tangent.

3.6. Logical Functions

In CommonLisp NIL is regarded as false and any other value as true. The global variable T, bound to itself, is
usually used for representing true. For example:

> (setq x t) regarded as true
T
> (setq y nil) regarded as false
NIL
> (setq z 1) regarded as true
1
> (or x y z)
T X = T is the first true value
> (and x y z)
NIL Y is NIL
> (or z x y)
1 Z = 1 is the first true value
> (not y)
T Y is NIL

 17

> (not z)
NIL Z is 1 (i.e. true)

The following functions return or operate on logical values.

Function Type Description

(< X Y) *EXTFN True if the number X is less than Y.
(<= X Y) *LAMBDA True if the number X is less than or equal to Y.
(= X Y) *EXTFN Tests if two numbers are the same. For example:
 (= 1 1.0) => T, while
 (EQUAL 1 1.0) => NIL
(> X Y) *LAMBDA True if the number X is greater than Y.
(>= X Y) *LAMBDA True if the number X is greater than or equal to Y
(AND X...) *SPECIAL Evaluate the forms X... and return NIL when the first form

evaluated to NIL is encountered. If no form evaluates to NIL the
value of the last form is returned.

(COMPARE X Y) EXTFN Compare order of two objects. Return 0 if they are equal, -1 if less,
and 1 if greater.

(EQ X Y) *EXTFN Test if X and Y have the same address.
(EQUAL X Y) *EXTFN Test if objects X and Y are equivalent. Notice that, in difference to

CommonLisp, arrays are equal if all their elements are equal, and
equality can be defined for user defined data types too (Sec. 9.7).

(EVENP X) *LAMBDA True if X is an even number.
(NEQ X Y) *EXTFN Same as (NOT (EQ X Y))
(ODDP X) *LAMBDA True if X is an odd number.
(OR X...) *SPECIAL Evaluate the forms X... until some form does not evaluate to NIL.

Return the value of that form.
(NOT X) *EXTFN True if X is NIL; same as NULL.

3.7. Arrays

Arrays (data type name ARRAY) in ALisp representation of one-dimensional sequences. The elements of an array
can be of any type. Arrays are printed using the notation #(e1 e2 …). For example:

> (setq a #(1 2 3))
#(1 2 3)

Arrays are allocated with the function (MAKE-ARRAY SIZE). For example:

> (make-array 3)
#(NIL NIL NIL)

Notice that ALisp only supports 1-dimensional arrays (vectors) while CommonLisp allows arrays of any
dimensionality.

Adjustable arrays (datatype ADJARRAY) are arrays that can be dynamically increased in size. They are allocated
with the function

 18

(MAKE_ARRAY SIZE :ADJUSTABLE T)

Arrays can be enlarged with the function

(ADJUST-ARRAY ARRAY NEWSIZE)

Enlargement of adjustable arrays is incremental, and does not copy the original array. Non-adjustable arrays can be
enlarged as well, but the enlarged array may or may not be a copy of the original one depending on its size. In other
words, you have to rebind non-adjustable arrays after you enlarge them.

For example:

> (setq a (make-array 3))
#(NIL NIL NIL)
> (adjust-array a 6)
#(NIL NIL NIL NIL NIL NIL)
> a
#(NIL NIL NIL)
> (setq a (make-array 3 :adjustable t))
#(NIL NIL NIL)
> (adjust-array a 6)
#(NIL NIL NIL NIL NIL NIL)
> a
#(NIL NIL NIL NIL NIL NIL)
>

Function Type Description

(ADJUST-ARRAY A NEWSIZE) *EXTFN Increase the size of the array A to NEWSIZE. If the array is

declared to be adjustable at allocation time it is adjusted in-place,
otherwise an array copy may or may not be returned.

(AREF A I) *MACRO Access element I of the array A. Enumeration starts at 0. Unlike
CommonLisp, only one dimensional arrays are supported.

(ARRAY-TOTAL-SIZE A) *EXTFN Return the number of elements in the (one-dimensional) array A.
(ARRAYP X) *EXTFN True if X is an array (fixed or adjustable).
(ARRAYTOLIST A) EXTFN Convert an array A to a list.
(CONCATVECTOR X Y) LAMBDA Concatenate arrays X and Y.
(COPY-ARRAY A) *EXTFN Make a copy of the non-adjustable array A.
(ELT A I) EXTFN Same as (AREF A I).
(LISTTOARRAY L) EXTFN Convert a list to a non-adjustable array.
(MAKE-ARRAY SIZE :INITIAL-ELEMENT V :ADJUSTABLE FLG)
 *MACRO Allocate a one-dimensional array of pointers with SIZE elements.

:INITIAL-ELEMENT specifies optional initial element values. If
:ADJUSTABLE is true an adjustable array is created; the default is a non-
adjustable array.

(PUSH-VECTOR A X) EXTFN Adjusts the array A with one element X at the end.
(SETA A I V) EXTFN Set the element I in the array A to V. Returns V. Same as (SETF

(AREF A I) V).
(SWAP A E1 E2) LAMBDA Swap elements E1 and E2 in the array A.
(VECTOR X...) *EXTFN Make an array with elements X..

 19

3.8. Hash Tables

Hash tables (data type name HASHTAB) are unordered dynamic tables that associate values with ALisp objects as
keys. Hash tables are allocated with

 (MAKE-HASH-TABLE)

Notice that, unlike standard CommonLisp, no initial size is given when hash tables are allocated. Instead the system
will automatically and incrementally grow (or shrink) hash tables as they evolve.

Elements of a hash table are accessed with

(GETHASH KEY HASHTAB)

Elements of hash tables are updated with

(SETF (GETHASH KEY HASHTAB) NEW-VALUE)

Iteration over all elements in a hash table is made with

(MAPHASH (FUNCTION(LAMBDA (KEY VAL) ...)) HASHTAB)

Notice that comparisons of hash table keys in CommonLisp is by default using EQ and not EQUAL. Thus, e.g., two
strings with the same contents do not match as hash table keys unless they are pointers to the same string. Normally
EQ comparisons are useful only when the keys are symbols. To specify a hash table comparing keys with EQUAL
(e.g. for numeric keys or strings) use

(MAKE-HASH-TABLE :TEST (FUNCTION EQUAL))

Example:

> (setq ht1 (make-hash-table))
#[HASHTAB 2547944]
> (setf (gethash "hello" ht1) "world")
"world"
> (gethash "hello" ht1)
NIL
> (setq ht2 (make-hash-table :test (function equal)))
#[HASHTAB 2548104]
> (setf (gethash "hello" ht2) "world")
"world"
> (gethash "hello" ht2)
"world"
>

The following system functions operate on hash tables:

Function Type Description

(CLRHASH HT) EXTFN Clear all entries from hash-table HT and return the empty table.
(GETHASH K HT) *EXTFN Get value of element with key K in hash table HT.
(HASH-BUCKET-FIRSTVAL HT) EXTFN Return the value for the first key stored in the hash table HT. What

is the first key is undefined and depends on the internal hash
function used.

 20

(HASH-BUCKETS HT) EXTFN Compute the number of buckets in the hash table HT.
(HASH-TABLE-COUNT HT) *EXTFN Compute the number of elements stored in the hash table HT.
(MAKE-HASH-TABLE :SIZE S :TEST EQFN)
 *MACRO Allocate a new hash table. The CommonLisp parameter :SIZE is

ignored as the hash tables in ALisp are dynamic and scalable. The
keyword parameter :TEST specifies the function to be used for
testing equivalence of hash keys. :TEST can be (FUNCTION EQ)
(default) or (FUNCTION EQUAL).

(MAPHASH FN HT V) *EXTFN Apply (FN KEY VAL V) on each key and value of the hash table
HT.

(PUTHASH K HT V) EXTFN Set the value stored in the hash table HT under the key K to V.
Same as (SETF (GETHASH K HT) V).

(REMHASH K HT) EXTFN Remove the value stored in the hash table HT under the key K.

3.9. Main memory B-trees

Main memory B-trees (datatype BTREE) are ordered dynamic tables that associate values with Alisp objects as
keys. The interfaces to B-trees are very similar to those of hash tables. The main difference between B-trees and
hash table are that B-trees are ordered by the keys and that there are efficient tree search algorithms for finding all
keys in a given interval. B-trees are slower than hash tables for equality searches.

B-trees are allocated with

(MAKE-BTREE)

Elements of a B-tree are accessed with

(GET-BTREE KEY BTREE)

SETF is used for modifying accessed B-tree element.

For example:

> (setq bt (make-btree))
#[BTREE 3396632]
> (setf (get-btree "hello" bt) "world")
"world"
> (get-btree "hello" bt)
"world"
>

System functions operating on main memory B-trees:

Function Type Description

(GET-BTREE K BT) EXTFN Get value of element with key K in B-tree BT. Comparison uses

COMPARE.
(MAKE-BTREE) EXTFN Allocate a new B-tree.

 21

(MAP-BTREE BT LOWER UPPER FN)
 EXTFN Apply ALisp function (FN KEY VAL) on each key-value pair in B-

tree BT whose key is larger than or equal to LOWER and less than
or equal to UPPER. If any of LOWER or UPPER are the symbol ’*’
it means that the interval is open in that end. If both LOWER and
UPPER are ’*’ the entire B-tree is scanned.

(PUT-BTREE K BT V) EXTFN Set the value stored in the B-tree BT under the key K to V. Same as
(SETF (GET-BTREE K BT) V). V=NIL => marking element as
deleted. NOTICE that the elements are not physically removed
when V=NIL; they are just marked as deleted. To physically
remove them you have to copy the B-tree.

3.10. Functional arguments and dynamic forms

Variables bound to functions or even entire expression can be invoked or evaluated by the system. Functional
arguments (higher order functions) provide a very powerful abstraction mechanism that actually can replace many
control structures in conventional programming languages. The map functions in Sec. 3.11 are examples of
elaborate use of functional arguments.

The simplest case for functional arguments is when a function is passed as arguments to some other function. For
example, assume we want to make a max function, (SUM2 X Y FN) that calls the functional argument FN with X
and Y as actual parameters and then adds together the result (i.e. sum2 = fn(x) + fn(y)):

> (defun sum2 (x y fn)
(+ (funcall fn x)(funcall fn y))) The system function FUNCALL calls FN
SUM2
> (sum2 1 2 (function sqrt)) sqrt(1) + sqrt(2)
2.41421

In CommonLisp, the system function FUNCALL must be used to call a function bound to a functional argument.
Also notice that FUNCTION should be used (rather than QUOTE) when passing a functional argument, to be
explained next.

3.10.1. Closures

In the example FUNCTION is used when passing a functional argument. QUOTE should not be used when passing
functional arguments. The reason is that otherwise the system does not know that the argument is a function. This
matters particularly if the functional argument is a lambda expression. Consider a function to compute XN + YN
using SUM2:

> (defun sumpow (x y pow)
 (sum2 x y (function FUNCTION must be used here
 (lambda (z) lambda expression = anonymous function
 (expt z pow))))) POW is free variable in lambda
SUMPOW
> (sumpow 1 2 2)
5

Free lambda expressions [1] as this one are very useful when passing free variables, like POW, into a functional
argument. Now, let’s see what happens if QUOTE was used instead of FUNCTION:

 22

> (defun sumpow (x y pow)
 (sum2 x y (quote This is wrong!
 (lambda (z)
 (expt z pow)))))
(SUMPOW REDEFINED)
Suspicious use of QUOTE rather than FUNCTION: (QUOTE (LAMBDA (Z) (EXPT Z POW))) in
SUMPOW
SUMPOW
lisp 1> (sumpow 1 2 2)
Error 1, Unbound variable: POW
When evaluating: POW
(FAULTEVAL BROKEN)
In SUM2 brk>:r

As you can see, the system warns that QUOTE is used instead of FUNCTION and then the variable POW is
unbound when SUMPOW is called. The reason is that the system QUOTE returns its argument unchanged while
FUNCTION makes a closure of its argument if it is a lambda expression. A closure is a special datatype that holds a
function (lambda expression) together with the local variables bound where it is called. In our example, the local
variable POW is bound when SUM2 is called in SUMPOW. Thus always use FUNCTION when passing functional
arguments.

3.10.2. Applying functions with variable arity

FUNCALL does not work if we don’t know until at run time the number of arguments of the function to call. In
particular FUNCALL cannot be used if we want to call a function with variable arity, like + (plus). What we need is
a way to construct a dynamic argument list before we call the function. For this the system function APPLY is used.
For example, the function (COMBINEL X Y FN) applies FN on the elements of X and Y and combines the results
also using FN:

> (defun combinel (x y fn)
 (funcall fn
 (apply fn x)
 (apply fn y)))
COMBINEL
> (combinel '(1 2 3) '(4 5 6) (function +))
21

In this case we have to construct the arguments as a list to the inner function applications, and therefore APPLY has
to be used. COMBINEL could also have been written less efficiently as:

> (defun combinel (x y fn)
 (apply fn
 (list
 (apply fn x)
 (apply fn y))))
(COMBINEL REDEFINED)
COMBINEL
> (combinel '(1 2 3) '(4 5 6) (function +))
21

 23

3.10.3. Dynamic evaluation

The most general way to execute dynamic expressions in Lisp is to call the system function EVAL. It takes as
argument any Lisp form (i.e. expression) and evaluates it. For example:

> (setq a 1)
1
> (eval '(list a))
(1)
> (eval (list a)) This fails because we are trying to evaluate the form (1)
Error 15, Undefined function: 1
When evaluating: (1)
(FAULTEVAL BROKEN)
In *BOTTOM* brk>:r

 > (list a) This gives the same result as the Lisp top loop calls eval
(1)

EVAL is actually very seldomly used. It is useful when writing Lisp programming utilities, like e.g. the top loop or
remote evaluation (Sec. 5.3.2). Avoid using EVAL unless you really need to, as the code executed by EVAL is not
known until run-time and this is very unpredictable and prohibits compilation and program analysis. If possible, use
FUNCALL and APPLY instead. In most other cases macros (Sec. 3.13) replace need for EVAL while at the same
time producing compilable and analyzable programs.

3.10.4. System functions for run-time evaluation

Function Type Description

(APPLY FN ARGS) *EXTFN Apply the function FN on the arguments in the list ARGS.
(APPLYARRAY FN A) EXTFN Apply the Lisp function FN on the arguments in the array A.
(EVAL FORM) *EXTFN Evaluate FORM. Unlike CommonLisp, the form is evaluated in the

lexical environment of the EVAL call.
(F/L FN ARGS FORM...) MACRO (F/l (X) FORM...) <=> (FUNCTION(LAMBDA(X) FORM...))

is equivalent to the CommonLisp read macro (also supported):
#’(LAMBDA (X) FORM...).

(FUNCALL FN ARG1...) *EXTFN Call function FN with arguments ARG1...
(FUNCTION FN) *SPECIAL Make a closure of the function FN. Do not use QUOTE!

3.11. Map functions

Map functions are functions and macros taking other functions as arguments and applying them repeatedly on
elements in lists and other data structures. Map functions provide a general and clean way to iterate in a functional
programming style over data structures. They are often a good alternative to the more conventional iterative
statements (Sec. 3.12.3). They are also often a good alternative to recursive functions as they don’t eat stack as
recursive functions do.

The classical map function is MAPCAR. It applies a function on every element of a list and returns a new list
formed by the values of the applications. For example:

 24

> (mapcar (function 1+) '(1 2 3))
(2 3 4)

The function MAPC is similar, but does not return any value. It is useful when the applied function has side effects.
For example:

> (mapc (function print) '(1 2 3))
1
2
3
NIL MAPC always returns NIL

In CommonLisp the basic map functions may take more than one arguments to allow parallel iteration of several
lists. For example:

> (mapcar (function +)
 '(1 2 3) '(10 20 30))
(11 22 33)

Lambda expressions are often useful when iterating using map functions. For example:

> (defun rev2 (a b)
 (let (ra rb)
 (mapc #'(lambda (x y)
 (push x ra)
 (push y rb))
 a b)
 (list ra rb)))
REV2
> (rev2 '(1 2 3) '(a b c))
((3 2 1) (C B A))

The following system map functions are available in ALisp:

Function Type Description

(ISOME L FN) EXTFN FN is function with two arguments X and TAIL. Apply FN on each

element and its tail in list L. If FN returns true for some element in
L then ISOME will return the corresponding tail of L.
For example:
(ISOME ’(1 2 2 3) #’(LAMBDA (X TL)(EQ X (CADR
TL)))) => (2 2 3)

 See also SOME.
(MAPC FN L...) *MACRO Apply FN on each of the elements of the lists L... in parallel.
(MAPCAN FN L...) *MACRO Apply FN on each of the elements of the lists L... in parallel and

NCONC together the results.
(MAPCAR FN L…) *MACRO Apply FN on each of the elements of the lists L... in parallel and

build a list of the results.
(MAPFILTER FILT LST &optional OP)

 25

 EXTFN If OP=NIL return the subset of the elements for which the filter function
FILT returns true. If OP is specified the result is transformed by applying
OP on each element of the subset. For example:
(MAPFILTER (FUNCTION NUMBERP) ’(A 1 B 2) (F/l
(x)(1+ x))) => (2 3)

 See also SUBSET!
(MAPL FN L...) *MACRO Apply FN on each tail of the lists L...
(SUBSET L FN) LAMBDA Return the subset of the list L for which the function FN returns

true.
(EVERY FN L...) *MACRO Return T if FN returns non-nil result when applied on every element

in the lists L... in parallel.
(NOTANY FN L…) *MACRO Apply FN on elements in the lists L... in parallel. Return T if FN

does not return true for any element.
(SOME FN L...) *MACRO Apply FN on elements in the lists L... in parallel. Return T if FN

returns non-NIL value for some element.

3.12. Control Structures
Syntactic sugar and control structures are implemented in Lisp as macros and special functions. This subsection
describes system functions, macros, and special forms.

3.12.1. Compound expressions

The compound functions PROGN, PROG1, and PROG2 are used for forming a single form out of several forms.
This makes sense only if some of the forms have side effects. For example:

> (progn (print "A") "B")
"A"
"B" Value of PROGN is value of last argument
> (prog1 (print "A") "B")
"A"
"A" Value of PROG1 is value of first argument

Compond expressions are also implicitly formed by lambda and LET expressions and many control structures
described in the next section.

Function Type Description

(PROG1 X...) *EXTFN Return the value of the first form in X...
(PROG2 X…) *EXTFN Return the value of the second form in X…
(PROGN X...) *EXTFN Return the value of the last form in X...

3.12.2. Conditional expressions

Conditional expressions are special forms that evaluate expressions conditional on the truth value of some condition.
The classical Lisp conditional expression is COND. For example:

> (setq x 1)

 26

1
> (setq y 2)
2
> (setq z nil)
NIL
> (cond (x)
 (t y))
1
1> (cond (z (print "NO"))
 (y (print "YES") 5)
 (t (print "NO")))
"YES"
5

An alternative to COND is (IF PRED THEN ELSE). For example, the COND expression above can also be written:

> (if z (print "NO")
 (if y (progn (print "YES") 5)
 (print "NO")))
"YES"
5

The function PROGN has to be used to form compound expressions inside the IF. Such nested IFs are not
recommended as they make the code difficult to read.

The CASE macro selects forms to evaluate conditional on the value of a test form. For example:

> (case (+ x 1) The test form
 ((0 2) "YES") Succeeds if (+ x 1) is either 0 or 2
 (1 "NO") Succeeds if (+ x 1) is 1
 (otherwise "NO")) Default case
"YES" X is 1

The following conditional statements are available in ALisp:

Function Type Description

(CASE TEST (WHEN THEN...)...(OTHERWISE DEFAULT...)
 *MACRO For example:
 (CASE (+ 1 2)(1 ’HEY)((2 3) ’HALLO) (OTHERWISE

’DEFAULT))
=> HALLO

 Evaluate TEST and match the value with each of the WHEN
expressions. For the WHEN expression matching the value, the
corresponding forms THEN... are evaluated, and the last one is
returned as the value of CASE. Atomic WHEN expressions match
if they are EQ to the value, while lists match if the value is member
of the list. If no WHEN expression matches the forms DEFAULT...
are evaluated and returned as the value of CASE. If no
OTHERWISE clause is present the default result is NIL.

(COND (TEST FORM...)...) *SPECIAL Classical Lisp conditional execution of forms.
(IF P A B) *SPECIAL If P then evaluate A else evaluate B.

 27

(SELECTQ TEST (WHEN THEN...)... DEFAULT)
 SPECIAL For example:
 (SELECTQ (+ 1 2)(1 ’HEY)((2 3) ’HALLO) ’DEFAULT) =>

HALLO
Same as

 (CASE TEST (WHEN THEN...)... (OTHERWISE DEFAULT))
(UNLESS TEST FORM…) *MACRO Evaluate FORM… if TEST is false.
(WHEN TEST FORM…) *MACRO Evaluate FORM… if TEST is true.

3.12.3. Iterative statements

As in other programming languages Lisp provides iterative control structures, normally as macros. However, in
most cases map functions (Sec. 3.11) provide the same functionality in a cleaner and often more general way.

Function Type Description

(DO INITS ENDTEST FORM...) *MACRO General CommonLisp iterative control structure [1]. Loop can be

terminated with (RETURN VAL) in addition to the ENDTEST.
(DO* INITS ENDTEST FORM...) *MACRO As DO but the initializations INIT are done in sequence rather than

in parallel.
(DOLIST (X L) FORM...) *MACRO Evaluate the forms FORM... for each element X in list L.
(DOTIMES (I N) FORM...) *MACRO Evaluate the forms FORM... N times. I varies from 0 to N-1.
(LOOP FORM...) *MACRO Evaluate the forms FORM... repeatedly. The loop can be

terminated, and the result VAL returned, by calling (RETURN
VAL).

(RETURN VAL) *LAMBDA Return value VAL form the block in which RETURN is called. A
block can be a PROG-LET, PROG-LET*, DOLIST, DOTIMES,
DO, DO*, LOOP or WHILE expression.

(RPTQ N FORM) SPECIAL Evaluate FORM N times. Recommened for timing in combination
with the function TIMER.

(WHILE TEST FORM...) MACRO Evaluate the forms FORM... while TEST is true or until RETURN
is called.

3.12.4. Non-local returns

Non-local returns allows to bypass the regular function application order. The classical functions for this are
CATCH and THROW. (CATCH TAG FORM) evaluates TAG to a catcher which must be a symbol. Then FORM is
evaluated and if the function (THROW TAG VALUE) is called with the same catcher then VALUE is returned. If
THROW is not called the value of FORM is returned. For example:

> (defun foo (x)(catch 'foo-catch (fie (+ 1 x))))
FOO
> (defun fie (y)(cond ((= y 2)(throw 'foo-catch -1))
 (t y)))
FIE
> (foo 1)
-1
> (foo 2)

 28

3

A related subject is how to catch errors. In particular UNWIND-PROTECT is the general mechanism to handle any
kind of non-local return and error trapping. This is described in Sec. 6.1.

Function Type Description

(CATCH TAG FORM) *SPECIAL Catch calls to THROW inside FORM matching TAG.
(THROW TAG VAL) *EXTFN Return VAL as the value of a call to CATCH with the catcher TAG

that has called THROW directly or indirectly.

3.13. Macros

Lisp macros provide a way to extend Lisp with new control structures and syntactic sugar. Because programs are
represented as data in Lisp it is particularly simple to make Lisp programs that transform other Lisp programs.
Macros provide the hook to make such code transforming programs available as first class objects. A macro should
be seen as a rewrite rule that takes a Lisp expression as argument and produces another equivalent Lisp expression
as result. For example, assume we want to define a new control structure, FOR, to make for loops, e.g. (for i 2 10
(print i)) prints the natural numbers from 2 to 10. FOR can be defined as a macro:

> (defmacro for (var from to do)
 (subpair '(_var _from _to _do) _VAR, _FROM, TO, and _DO are substituted
 (list var from to do) with these actual values
 '(let ((_var _from)) This is the code skeleton
 (while (<= _var _to)
 _do
 (setq _var (1+ _var))))))
FOR
lisp 1> (for i 2 4 (print i)) Macros expanded by interpreter
2
3
4
NIL Value of FOR

When defining macros as in the example one normally have a code skeleton in which one replaces elements with
actual arguments. In the example we use SUBAIR to do the substitution. A more convenient CommonLisp facility
to define code skeleton is to use backquote (‘`’), which is a variant of QUOTE where pieces can be marked for
evaluation. Using backquote FOR could also have been written as:

> (defmacro for (var from to do)
 `(let ((, var , from))
 (while (<= , var , to)
 , do
 (setq , var (1+ , var)))))
(FOR REDEFINED)
FOR
> (for i 2 4 (print i))
2
3
4
NIL

 29

The backquote character ‘`’ marks the succeeding expression to be back quoted. In a back quoted expression the
character ‘,’ indicates that the next expression is to be evaluated.

Macros can be debugged like any other Lisp code (Sec. 7). In particular it might be interesting to find out how a
macro transform a given call. For this the system function MACROEXPAND can be used, normally in combination
with pretty-printing with PPS (Sec 5). For example:

> (macroexpand '(for i 2 4 (print i)))
((LAMBDA (I) (WHILE (<= I 4) (PRINT I) (SETQ I (1+ I)))) 2)
> (pps (macroexpand '(for i 2 4 (print i))))
((LAMBDA (I) PPS makes more readable printing of code
 (WHILE
 (<= I 4)
 (PRINT I)
 (SETQ I
 (1+ I))))
 2)
NIL

Notice that macros should not have side effects! They should be side effect free Lisp code that transforms one piece
of code to another equivalent piece of code. For example, it is not unusual to use macros to define functions where
arguments are automatically quoted. For example, (PP FN1….Fn) pretty-prints function definitions and the
following expression pretty-prints the definition of PP itself:

> (pp pp)
(DEFMACRO PP (&REST FNS)
 "Pretty prints function definitions"
 (LIST 'PPF
 (LIST 'QUOTE FNS)))
(PP)
> (macroexpand '(pp pp)) Let’s look at how (PP PP) is rewritten
(PPF (QUOTE (PP))) The function PPF is a lambda function

MACROs are made very efficient in ALisp because the first time the interpreter encounters a macro call it will
modify the code and replace the original form with the macro-expanded one (just-in-time expansion). Thus a macro
is normally evaluated only once. The definition of a macro is a regular function definition, but each symbol has a
special flag indicating that its definition is a macro.

The following functions are useful when defining macros:

Function Type Description

(BQUOTE X) MACRO BQUOTE implements ALisp’s variant of the CommonLisp read

macro ‘ (back-quote). X is substituted for a new expression where
’,’ (comma) and ’,@’ (at sign) are recognized as special markers. A
comma is replaced with the value of the evaluation of the form
following the comma. The form following an at-sign is evaluated
and ’spliced’ into the list.
For example, after evaluating
(setq a ’(1 2 3))

 30

(setq b ’(3 4 5))
then
‘(a (b , a ,@ b))
or equivalently
(bquote(a (b , a ,@ b))
both evaluate to
(a (b (1 2 3) 3 4 5))
Very useful for making Lisp macros.

(DEFMACRO NAME ARGS FORM...)
 *SPECIAL Define a new MACRO.
(KWOTE X) EXTFN Make X a quoted form. Good for making Lisp macros.

For example,
(KWOTE T) => T
(KWOTE 1) => 1
(KWOTE ’A) => (QUOTE A)
(KWOTE ’(+ 1 2)) => (QUOTE (+ 1 2))

(KWOTED X) EXTFN Return T if X is a quoted form. For example:
(KWOTED 1) => T
(KWOTED ’(QUOTE (1))) => T
(KWOTED ’(1)) => NIL

(MACRO-FUNCTION FN) *EXTFN Return the function definition of FN if FN is a macro; otherwise
return NIL.

(MACROEXPAND FORM) *EXTFN If FORM is a macro return what it rewrites FORM into; otherwise
FORM is returned unchanged.

(PROGNIFY FORML) LAMBDA Make a single form from a list of forms FORML.
(UNFUNCTION FORM) LAMBDA Get the function definition of a functional expression.

3.14. Defining structures

ALisp includes a subset of the structure definition package of CommonLisp. The structures are implemented in
ALisp using fixed size arrays. You are recommended to use structures instead of lists when defining data structures
because of their more efficient and compact representation.

A new structure S is defined with the macro (DEFSTRUCT S FIELD1...), for example:

> (defstruct person name address)
PERSON

DEFSTRUCT defines a new structure S with fields named FIELD1... pointing to arbitrary objects. DEFSTRUCT
generates a number of macros and functions to create and update instances of the structure.
New instances are created with

(MAKE-S :FIELD1 VALUE1 ...)

for example:

> (setq p (make-person :name "Tore" :address "Uppsala"))
#(PERSON "Tore" "Uppsala")

 31

The fields of a structure are updated and accessed using accessor functions generated for each field:

(S-FIELD S)

for example:

> (person-name p)
"Tore"

Fields are updated by combining SETF with an accessor function:

(SETF (S-FIELD S) VAL)

For example:

> (setf (person-name p) "Kalle")
"Kalle"
> (person-name p)
"Kalle"

An object O can be tested to be a structure of type S using the generated function:

(S-P O)

For example:

> (person-p p)
T

3.15. Miscellaneous functions

Function Type Description

(ADVISE-AROUND FN CODE) LAMBDA Replace the body of function FN with form CODE where each * is

substituted for the original body of FN. (So called aspect-oriented
programming). CODE must be a single form. The variables of FN
are available in CODE. If the function is an EXTFN the variable
!ARGS is bound in CODE to a list of the actual arguments.

(CHECKEQUAL TEXT (FORM VALUE)...)
 SPECIAL Regression testing facility. The TEXT is first printed. Then each

FORM is evaluated and its result compared with the value of the
evaluation of the corresponding VALUE. If some evaluation of
some FORM is not EQUAL to the corresponding VALUE an error
notice is printed.

(DECLARE ...) *MACRO Dummy defined in ALisp for compatibility with CommonLisp.
(EVALLOOP) EXTFN Enter a Lisp top loop. Return to caller when function (EXIT) is

called.
(EXIT) EXTFN Return from the Lisp top loop to the program that called it. In a

stand-alone Amos II system EXIT is equivalent to QUIT. When
Amos II is embedded in some other system EXIT will pass the
control to the embedding system.

(ID X) LAMBDA ID is the identity function.
(IMAGESIZE SIZE) EXTFN Extend the system’s database image size to SIZE. If SIZE = NIL the

 32

current image size is returned. The image is normally extended
automatically by the system when memory is exhausted. However,
the automatic image expansion may cause a short halting of the
system while the OS is mapping more virtual memory pages. By
using IMAGESIZE these delays can be avoided.

(QUIT) *EXTFN Quit Lisp. If ALisp is embedded in another system it will terminate
as well.

(ROLLOUT FILE) EXTFN Save the ALisp memory area (image) in file FILE. It can be
restored by specifying FILE on the command line the next time
ALisp is started.

(SETF PLACE VAL) *MACRO Update the location PLACE to become VAL. The location can be
specified with, e.g., one of the functions AREF, GETL or
GETHASH. It can also be a symbol, in which case SETF behaves
like SETQ.

 A new SETF macro can be defined for a function call (FOO ...) by
putting a form on the property list of FOO under the indicator
SETFMETHOD. The SETF macro should have the format
 (LAMBDA (PLACE VAL) ...).
It is executed when (SETF (FOO ...) V) is called and thereby
PLACE is bound to the list (FOO ...) and VAL to V. The SETF
method should return the form to do the update.

(STACKTOP SIZE SLACK) EXTFN Change or obtain the size of Lisp’s variable binding stack. SIZE is
the total stack size in stack frames, while SLACK indicates the
number of stack frames that has to remain when an error happens.
The SLACK allows the break loop to work even when stack
overflow happens, as it provides some remaining stack space when
an error happens. The slack should be at least 300 (initial setting)
for the break loop to work.The current setting is obtained as a pair
by passing NIL as arguments. Notice that the SIZE can never be
increased beyond the initial setting when the system is started up.
The initial stack size can be set in C by assigning the global C
variable a_stacksize before the system is initialized. STACKTOP
allows setting a smaller stack size than the initial one to prevent the
system from crashing because of C stack overflow, which may
happen in, e.g., DLLs where the calling system may have allocated
a to small C stack size.

(TYPENAME X) EXTFN Get the name of the datatype of object X.

3.16. Hooks

Hooks are lists of Lisp functions executed at particular states of the system. Currently there is an initialization hook
evaluating forms just after the system has been initialized, and a shutdown hook evaluating forms when the system is
terminated.

To register a form to be executed just after the database image has been read call:

(REGISTER-INIT-FORM FORM &optional WHERE)

The Lisp expression FORM is inserted into a list of forms stored in the global variable AFTER-ROLLIN-FORMS,
which are evaluated by the system just after a database image has been read from the disk. If WHERE=FIRST the
form is added in front of the list; otherwise it is added to the end. For example:

 33

> (register-init-form '(formatl t "Welcome!" t))
OK

To register a form to be evaluated when the system is exited use the system function:

(REGISTER-SHUTDOWN-FORM FORM WHERE)

The Lisp expression FORM is evaluated just before the system is to be exited using (QUIT). The shutdown hook
will not be executed if (EXIT) is called. The global variable SHUTDOWN-FORMS contains a list of the shutdown
hook forms. For example:

> (register-shutdown-form '(formatl t "Goodbye!" t))
OK

The hooks are saved in the database image. For example, given that we have registered to above two hooks we can
do the following:

> (rollout "myimage.dmp") Save the database image in a file
T
> (quit)
Goodbye! The shutdown hook is evaluated.
c:\torer>amos2 myimage.dmp Start Amos II with the saved image
amos2 myimage.dmp
Welcome! The initialization hook is evaluated.
Amos II Release 7, v7
Amos 1>

4. Time Functions

Time can be represented in ALisp either as absolute time values or relative time values (i.e. differences between
time points). Time values are used for storing time stamps, measuring time intervals, or control system behaviour.

4.1. System clock

The behaviour of the system can be influenced based on time either by i) making the system sleep for time period, or
ii) by running a background timer function at regular time intervals.

Function Type Description

(CLOCK) EXTFN Compute the number of wall clock seconds spent so far during the

run as a floating point number.
(SLEEP SEC) EXTFN The system function SLEEP makes the system sleep for SEC

seconds. It can be interrupted with CTRL-C. SEC is specified as a
real number.

(SET-TIMER FN PERIOD) EXTFN The function function SET-TIMER starts a timer function, which is
a Lisp function called regularly by the system kernel. PERIOD
specified the minimal interval between successive calls to the
function FN. In practice it will not be called that often, depending
on OS scheduling and other activities. The timer function is
terminated if it causes an error signal (Sec. 6). The statistical

 34

profiler (Sec. 7.4.1) is based on a timer function.

4.2. Absolute Time Values
The ALisp datatype TIMEVAL represents time points. A TIMEVAL object has two components, sec and usec,
representing seconds and micro seconds, respecively. A TIMEVAL object is printed as #[TIMEVAL sec usec], e.g.
#[TIMEVAL 2 3].

The following Lisp functions operate on time points:

Function Type Description

(MKTIMEVAL SEC USEC) EXTFN Create a new TIMEVAL object.
(TIMEVALP TVAL) EXTFN Return T if TVAL is a TIMEVAL object, otherwise NIL.
(TIMEVAL-SEC TVAL) EXTFN Return the number of seconds for a given TIMEVAL object.
(TIMEVAL-USEC TVAL) EXTFN Return the number of micro seconds for a given TIMEVAL object.
(T< T1 T2) EXTFN Return T if the TIMEVAL T1 is less than the TIMEVAL T2,

otherwise NIL.
(T<= T1 T2) LAMBDA Return T if TIMEVAL T1 is less than or equal to the TIMEVAL

T2, otherwise NIL.
(T> T1 T2) EXTFN Return T if the TIMEVAL T1 is greater than the TIMEVAL T2,

otherwise NIL.
(T>= T1 T2) LAMBDA Return T if the TIMEVAL T1 is greater than or equal to the

TIMEVAL T2, otherwise NIL.
(GETTIMEOFDAY) EXTFN Return a TIMEVAL representing the wall time from a system call

to C’s gettimeofday. Useful for constructing time stamps.
(TIMEVAL-TO-DATE TVAL) EXTFN Translate a TIMEVAL TVAL into a date. A date is a seven element

array where the first element is the Year, the second Month, the
third Date, the fourth Hour, the Minutes, the Seconds, and the
seventh Micro Seconds. All elements in the array are integers.

(DATE-TO-TIMEVAL D) EXTFN Translates a date D to a TIMEVAL.

4.3. Relative time values
Relative time values are represented by the datatype TIME. It has three components, hour, minute, and second. The
following functions operate on relative times:

Function Type Description

(MKTIME HOUR MINUTE SECOND)
 EXTFN Construct a new TIME object.
(TIMEP TM) EXTFN Return T if TM is a TIME otherwise NIL.
(TIME-HOUR TM) EXTFN Return the number of hours given a TIME TM.
(TIME-MINUTE TM) EXTFN Return the number of minutes given a TIME TM.
(TIME-SECOND TM) EXTFN Return the number of seconds given a TIME TM.

 35

4.4. Relative Date Values
Relative date values are represented by the datatype DATE. It has three components, year, month, and day. The
following functions operate on dates:

Function Type Description

(MKDATE YEAR MONTH DAY) EXTFN Construct a new date.
(DATEP DT) EXTFN Return T if DT is a date otherwise NIL.
(DATE-YEAR DT) EXTFN Return the number of years.
(DATE-MONTH DT) EXTFN Given a date DT, return the number of months given a date DT.
(DATE-DAY DT) EXTFN Return the number of days given a date DT.

5. Input and Output

The I/O system is based on various kinds of streams. A stream is a datatype with certain attributes allowing its
instances to be supplied as argument to the basic Lisp I/O functions, such as PRINT and READ. Examples of
streams are: i) file streams (type STREAM) for terminal/file I/O, ii) text streams (type TEXTSTREAM) for reading
and writing into text buffers, and iii) socket streams (type SOCKET) for communicating with other Amos II/Alisp
systems. The storage manager allows the programmer to define new kinds of stream (Sec. 9.8). The default (= nil)
file stream standard output prints to the console and standard input reads from the console.

Streams normally have functions providing the following operations:

Open a new stream, e.g. (OPENSTREAM FILE MODE) creates a new file stream.

Print bytes to the stream buffer. For example, (PRINT FORM STR) prints a form to a stream open for output and
iterates through FORM converting encountered data structures to byte strings that are printed to the stream.

Read bytes from the stream buffer. For example, (READ STR) reads of form from a stream open for input and will
thereby read bytes from the stream buffer. Notice that PRINT and READ are compatible so that a printed form will
be recreated by READ.

Send the contents of a stream to its destination when (FLUSH STR) is called.

Close the stream, when (CLOSESTREAM STR) is called.

The following functions work on any kind of stream:

Function Type Description

(CLOSESTREAM STR) EXTFN Close stream STR.
DEEP-PRINT GLOBAL (Default T). Normally the contents of fixed size arrays and

structures are printed by PRINT etc. This allows I/O of such

 36

datatypes. However, when _DEEP-PRINT_==NIL the contents of
arrays and structures are not printed. Good when debugging large or
circular structures.

(FORMATL STR FORM...) LAMBDA This function is a simple replacement of some of the functionality
of FORMAT in CommonLisp [1]. It prints the values of the forms
FORM... on stream STR. A marker T among FORM... indicates a
line feed while the string "~PP" makes the next element pretty-
printed. For example:

 (FORMATL T "One: " 1 T) prints
One: 1

(PPS S STR) LAMBDA Pretty-print expression S.
(PRIN1 S STR) *EXTFN Print the object S in the stream STR with escape characters and

string delimiters inserted so that the object can be read with (READ
STR) later to produce a form EQUAL to S.

(PRINC X STR) *EXTFN Print the object into the stream STR without escape characters and
string delimiters.

(PRINT X STR) *EXTFN (PRIN1 X STR) followed by a line feed.
(READ STR) *EXTFN Read expression from stream STR. IF STR is a string, the system

reads an expression from the string. For example:
(READ "(A B C)") => (A B C)

(READ-CHARCODE STR) EXTFN Read one byte from the stream STR and return it as an integer.
(REDIRECT-BASIC-STDOUTPUT FILE)
 EXTFN Redirect the standard output of ALisp to the specified file. In case

the system is run under another syste, e.g. inside a web server,
standard output is often disabled and this function allows logging in
a file instead. Notice that in such cases it is sometimes necessary to
run this function when the system is started. One way to achieve
this is to make an ALisp image where the AFTER-ROLLIN-
FORMS (Section 3.16) redirects standard output.

(SPACES N STR) LAMBDA Print N spaces on the stream STR.
(TERPRI STR) *EXTFN Print a line feed on the stream STR.

5.1. File I/O

File streams are used for print to and reading from files. Their type name is STREAM. Standard output and standard
input are regarded as file streams represented as nil. A new file stream is opened with

(OPENSTREAM FILENAME MODE)

where MODE can be "r" for reading, "w" for writing, or "a" for appending. For example:

> (setq s (openstream "foo.txt" "w"))
#[STREAM 3396656]
> (print '(hello world 1) s)
(HELLO WORLD 1)
> (closestream s)
#[STREAM 3396656]
> (setq s (openstream "foo.txt" "r"))
#[STREAM 3396800]
> (read s)
(HELLO WORLD 1)

 37

> (closestream s)
#[STREAM 3396800]
>

The following system functions and variables handles file I/O and file streams:

Function Type Description

(DELETE-FILE FILE) *EXTFN Delete the file named FILE. Returns T if successful.
(FILE-EXISTS-P NM) *EXTFN Return T if file named NM exists.
(FILE-LENGTH NM) *EXTFN Return the number of bytes in the file named NM.
(LOAD FILE) *EXTFN Evaluate the forms in the file named FILE.
(OPENSTREAM FILE MODE) EXTFN Open a file stream against an external file. MODE is the file mode

i.e. "r", "w", or "a". As errors can happen during the processing of a
file causing it not to be closed properly, you are advised to use
macros WITH-INPUT-FILE, and WITH-OUTPUT-FILE.

(PP FN...) MACRO Pretty-print the functions and variables FN... on standard output.
Notice that arguments of PP are not quoted. For example:

 (PP PPS PPF).
(PPF L FILE) LAMBDA Pretty-print the functions and variables in L into the specified file.

For example: (PPF ’(PPS PPF) "pps.lsp")
(PRINTL X...) LAMBDA Print the objects X... as a list on standard output.
(TYPE-READER TPE FN) EXTFN Define the lisp function (FN TPE ARGS STREAM) to be a type

reader for objects printed as #[TPE X...]. The type reader is
evaluated by the ALisp reader when the pattern is encountered in an
input stream. TPE is the type tag, ARGS is the list of argument of
the read object (X...), and STREAM is the input stream.

(WITH-INPUT-FILE STR FILE FORM)
 MACRO Open stream STR for reading from FILE, evaluate FORM, and

always close stream afterwards.
(WITH-OUTPUT-FILE STR FILE FORM)
 MACRO Open stream STR for writing to FILE, evaluate FORM, and always

close stream afterwards.

5.2. Text streams
Text streams (datatype TEXTSTREAM) allow the I/O routines to work against dynamically expanded buffers
instead of files. This provides an efficient way to destructively manipulate large strings. Text streams can also store
bit sequences (’blobs’). The following ALisp functions are available for manipulating text streams:

Function Type Description

(MAKETEXTSTREAM SIZE) EXTFN Create a new text stream with an initial buffer size. The system

automatically extends the initial size when necessary.
(TEXTSTREAMPOS TXTSTR) EXTFN Get the position of the read/print cursor in a text stream TXTSTR.

 38

(TEXTSTREAMPOS TXTSTR POS) EXTFN Move the cursor to the specified position. This position is also
updated by the regular Lisp I/O routines.

(TEXTSTREAMSTRING TXTSTR) EXTFN Retrieve the text stream buffer of TXTSTR as a string. Notice that
this function cannot be used if the buffer contains binary data.

(CLOSESTREAM TXTSTR) EXTFN Reset the cursor to position 0, i.e. same as
(TEXTSTREAMPOS TXTSTR 0).

5.3. Sockets

ALisp servers can communicate via TCP sockets. Essentially socket streams are abstracted as conventional I/O
streams where the usual ALisp I/O functions work. The ALisp functions PRINT and READ are thus used for
sending forms between ALisp systems.

There is also a higher level remote evaluation mechanisms where system can be set up as a server evaluating
incoming Lisp forms.

5.3.1. Point to point communication

With point-to-point communication two ALisp servers can communicate via sockets by establishing direct TCP/IP
socket connections. The first thing to do is to identify the TCP host on which an ALisp system is running by calling:

 (GETHOSTNAME)

Server side:

The first step on the server (receiving) side is to open a socket listening for establishments of incoming connections.
Two calls are needed on the server side:

A new socket object must be created which is going to accept on some port registrations of new socket connections
from clients. This is done with

(OPEN-SOCKET NIL PORTNO)

For example:

 > (open-socket nil 1235)
 #[socket NIL 1235 1936]

OPEN-SOCKET returns a new socket object that will listen on TCP port PORTNO. If PORTNO==0 it
means that the OS assigns a free port for incoming messages. If the OS assigns the port number of socket S
can be obtained with the function:

 (SOCKET-PORT S)

Then the server must then wait for clients to request connections by calling:

 (ACCEPT-SOCKET S &optional TIMEOUT)

ACCEPT-SOCKET waits for the next OPEN-SOCKET call to the server to establish a new connection. If
TIMEOUT is omitted the waiting is forever (it can be interrupted with CTRL-C), otherwise it specifies a
time-out in seconds. If an incoming connection request is received, ACCEPT returns a new socket stream

 39

to use for communication with the client issuing the OPEN-SOCKET request. ACCEPT-SOCKET returns
NIL if no OPEN-SOCKET request was received within the time-out period.

Client side:

On the client side a call to

(OPEN-SOCKET HOSTNAME PORTNO)

opens a socket stream to the server listening on port number PORTNO on host HOSTNAME. HOSTNAME must
not be NIL (which would indicate aserver connection socket). The result of OPEN-SOCKET is a SOCKET object,
which is a regular ALisp I/O stream that can be used by any I/O function. Thus, once OPEN-SOCKET is called the
regular Lisp I/O functions can be used for communication. A SOCKET stream behaves like any other I/O stream.

Notice that data is not sent on a socket stream before calling the function:

(FLUSH S)

To check whether there is something to read on a socket use:

(POLL-SOCKET S TIMEOUT)

POLL-SOCKET returns T if something arrived on socket stream S within TIMEOUT seconds, and NIL otherwise.
Polling can be interrupted with CTRL-C.

When a client has finished using a socket it can be closed and deallocated with:

 (CLOSE-SOCKET S)

Notice that all pending data is lost when CLOSE-SOCKET is called. The garbage collector automatically calls
CLOSE-SOCKET when a socket object is deallocated.

5.3.2. Remote evaluation

Amos II peers communicate through a protocol called remote evaluation. With remote evaluation Lisp forms are
sent from one peer to another for evaluation there after which the result is shipped back to the caller. The remote
evaluation requires the receiving peer to listen for incoming forms to be evaluated.

Server side:

On the server side the following makes an Amos II peer behave as a remote evaluation server, accepting incoming
forms to evaluate remotely.

An Amos II name server must be started on some host. The name server is an Amos II peer that keeps track of what
peers listen to what ports for remote evaluation (see 2). To start a name server run on the desired host, execute the
shell command:

 amos2 -n

The peer needs to be registered in the Amos II name server used by the peer under some name NAME. This is done
with:

 40

 (REGISTER-AMOS NAME &optional REREGISTER)

For example:

(REGISTER-AMOS "ME")

The NAME is a short nick name for the peer. The name server keeps track of the nick names of the peers
and makes sure that no name collisions occur. REREGISTER==T means that the system should reregister
NAME for this peer even if another peer is registered with the same nick name.

The OS environment variable AMOS-NAMESERVERHOST should be set to the IP host name of the computer
where the name server is running. Default is the same host as the peer.

The remote evaluation server must be listening for incoming remote evaluation requests on the port on which it has
been assigned for that purpose. This is done with:

(RUN-SERVER)

After RUN-SERVER is called the peer enters a remote evaluation server loop. The loop continues forever,
or until interrupted with CTRL-C. If an error occurs during the remote evaluation the default behaviour is
that the error message is shipped back to the caller. However, if the server is in debug mode (Sec . 7.1)
server errors will be trapped there.

Client side:

On the client side, to ship a FORM for evaluation on an Amos II peer with nick name PEER, simply call:

(REMOTE-EVAL FORM PEER)

The result of the remote evaluation is shipped back to REMOTE-EVAL. REMOTE-EVAL blocks until the result is
received. Errors occurring on server are shipped back to client.

For non-blocking messages use instead:

(SEND-FORM FORM PEER)

The difference to REMOTE-EVAL is that FORM is evaluated on PEER on its own; the client does not wait for the
result and is thus non-blocking. Errors are NOT sent back. SEND-FORM is faster than REMOTE-EVAL, in
particular when the messages are large. If you want to synchronize after many non-blocking messages sent with
SEND-FORM, end with a REMOTE-EVAL. For example, the following form will return the number 1000,
assuming that an Amos II peer named FOO is running:

 (progn (send-form '(setq xx 0) 'foo)
 (dotimes (i 10000)(send-form '(1++ xx) 'foo))
 (remote-eval 'xx 'foo))

6. Error handling
When the system detects an error it will call the Lisp function:

 (FAULTEVAL ERRNO MSG O FORM FRAME)

where

 41

ERRNO is an error number (-1 for not numbered errors)
MSG is an error message
O is the failing Lisp object
FORM is the last Lisp form evaluated when the error was detected.
FRAME is the variable stack frame where the error occurred.

The ALisp default behaviour of FAULTEVAL first prints the error message and then calls the function (RESET) to
signal an error to the system, an error signal. To reset Lisp means to jump to a pre-specified reset point of the
system. By default this reset point is the top level read-eval-print loop. It can also be a unwind protection to be
explained next.

6.1. Trapping exceptions

The special form UNWIND-PROTECT enables trapping error signals and clean up after error signals.

(UNWIND-PROTECT FORM CLEANUP)

The FORM is evaluated as usual until it is terminated, whether naturally or by means of a regular exit or an error
signal. The cleanup form CLEANUP is then evaluated before control is handed back. Note that the cleanup form of
an UNWIND-PROTECT is not protected by that UNWIND-PROTECT so errors produced during evaluation of CL
can cause problems. The solution is to nest UNWIND-PROTECT. The function (HARDRESET) bypasses
UNWIND-PROTECT and directly resets the system.

UNWIND-PROTECT traps any local or non-local exit, including error signals and THROW (Sec 3.12). For
example, a throw form may cause a catcher to be exited leaving a file open. This is clearly undesirable, so a
mechanism is needed to close the file and do any other essential cleaning up on termination of a construct, no matter
how or when the termination is caused. UNWIND-PROTECT can be used to achieve this.

It is possible to trap all errors raised during the evaluation of a form by using the macro (CATCH-ERROR FORM
CLEANUP). It evaluates FORM and returns the result of the evaluation, if successful. Should an error occur during
the evaluation of FORM, then REPAIR is evaluated if supplied and an error condition is returned which looks like:

(:ERRCOND (ERRNO "errmsg" X))

For example:

> (catch-error a)
(:ERRCOND (1 "Unbound variable" A))

The function (ERROR? X) tests if X is an error condition. It can be used for testing if CATCH-ERROR returned an
error condition. The functions ERRCOND-ARG (the object causing the error), ERRCOND-NUMBER (the error
number), and ERRCOND-MSG (the error message) are used for accessing error condition properties. The form
REPAIR is evaluated if an error is raised. In REPAIR the variable _ERROR-CONDITION_ is bound to the error
condition.

6.2. Raising errors

The function (ERROR MSG X) print and error message MSG and raises an error for X. The error number is always
-1 (user error).

 42

To cause an error signal without any error message call (RESET).

As any other error these functions will go through the regular error management mechanisms. User errors can be
caught with UNWIND-PROTECT or CATCH-ERROR.

6.3. User interrupts

After an interrupt is generated (e.g. CTRL-C) the system calls the Lisp function

 (CATCHINTERRUPT)

By default CATCHITERRUPT resets Lisp. In debug mode a break loop is entered when CTRL-C is typed.

For disable (delay) CTRL-C during evaluation of a FORM, use:

(DOUNITERRUPTED FORM)

6.4. Error management functions

Below follows short descriptions of system functions and variables for error management.

Function Type Description

(CATCH-ERROR FORM CLEANUP)
 MACRO Trap and repair errors. CLEANUP is optional.
(CATCHDEMON LOC VAL) LAMBDA See SETDEMON.
(CATCHINTERRUPT) LAMBDA This system function is called whenever the user hits CTRL-C.

Different actions will be taken depending on the state of the system.
(DOUNITERRUPTED FORM) MACRO Delays interrupts happening during the evaluation of FORM until

DOUNITERRUPTED is exited.
(ERRCOND-ARG EC) LAMBDA Get the argument of an error condition.
(ERRCOND-MSG EC) LAMBDA Get the error message of an error condition.
(ERRCOND-NUMBER EC) LAMBDA Get the error number of an error condition.
(ERROR MSG X) LAMBDA Print message MSG followed by ’: ’ and X and then generates an

error.
(ERROR? X) LAMBDA True if X is an error condition.
(FAULTEVAL ERRNO ERRMSG X FORM ENV)
 LAMBDA FAULTEVAL is called whenever the system detects an error. If the

system runs in debug mode FAULTEVAL then enters a break loop
(Sec. 7.1). If the system is not in debug mode FAULTEVAL prints
the error message and calls (RESET).

(FRAMENO) EXTFN Return the frame number of the top frame of the stack.
(HARDRESET) EXTFN Does a ’hard’ reset ignoring UNWIND-PROTECT. Called after

fatal errors such as stack overflow.
(RESET) EXTFN Signals an error. The control is returned to the latest reset point. The

reset point is either the ALisp top loop or the latest call to

 43

UNWIND-PROTECT.
(UNWIND-PROTECT FORM CL) *SPECIAL UNWIND-PROTECT enables the user to clean up after a local or

non-local exit.

7. Lisp Debugging
This section documents the debugging and profiling facilities of ALisp.

To enable run time debugging of ALisp programs the system should be put in debug mode. This is sutomatically
done when entering Lisp mode. To enable Lisp debugging also in AmosQL mode call (DEBUGGING T). To disable
debugging in Lisp mode call (DEBUGGING NIL). In debug mode the system checks assertions at run time and
analyses Lisp function definitions for semantic errors, and thus runs slightly slower. Also, in debug mode the system
will enter a break loop when an error occurs instead of resetting Lisp, as described next.

The interactive break loop for debugging is difficult or impossible if you are using the system in a batch
environment or an environment where an interactive break loop cannot be entered (e.g. under PHP). For debugging
in batch environments set the global variable _BATCH_ to true: (SETQ _BATCH_ T)

When _BATCH_ is set and the system is in debug mode errors are trapped and cause a backtrace to be printed
printed after which the error is thrown without entering the break loop.

7.1. The break loop
The break loop is a Lisp READ-EVAL-PRINT loop where some special debugging commands are available. This
happens either when i) the user has explicitly specified a break point for debugging specific broken functions, ii)
explicit break points are introduced in the code by calling HELP, or ii) when an error happens in debug mode. For
example:

> (defun foo (x) (fie x))
FOO
> (defun fie (y) x)
Undeclared free variable X in FIE Warning.
FIE
> (foo 1)
Error 1, Unbound variable: X Run time error.
When evaluating: X
(FAULTEVAL BROKEN) System error break point.
In FIE brk>:bt Make backtrace.
FIE
FOO
(FAULTEVAL BROKEN)
In FIE brk>:btv Make more detailed backtrace.
10:_ENV_ <-> 3
9:_ERRFORM_ <-> X
8:_ERROBJ_ <-> X
7:_ERRMSG_ <-> "Unbound variable"
6:_ERRNO_ <-> 1
5:--- (LAMBDA (_ERRNO_ _ERRMSG_ ...) "This function is called by system whenever
error detected" ...) --- @ 3
4:Y <-> 1
3:--- FIE --- @ 0

 44

2:X <-> 1
1:--- FOO --- @ 0
0:--- *BOTTOM* --- @ 0
(FAULTEVAL BROKEN)
In FIE brk>y Investigate variable y in FIE scope
1
(FAULTEVAL BROKEN)
In FIE brk>:r Reset Lisp
14.343 s
>

In the break loop the following break commands are available:

:help Print summary of available debugging commands, i.e. this list.

?= print arguments and values of broken function. The broken function is the function where the break loop is
first entered.

:lvars Print argument bound at focused frame. It is the same as the broken function when the break loop is
entered. Using stack moving commands the user can move down the stack to investigate other frames. The
focused function is then the function at the focused frame. The focused function is part of break loop
prompter.

:fp Print file position of the focused function.

:ub Unbreak the broken function.

:bt Print a backtrace of functions called at the focused frame. The depth of the backtraces is controlled by the
special variable *BACKTRACE-DEPTH* that tells how many function frames should be printed. Its
default is 10.

:btv Print a backtrace of functions and arguments of functions.

:btv* Print a long backtrace including all stack contents. To print the complete variable binding stack use the
function (DUMPSTACK FRAME) that print everything pushed on the stack starting at frame number
FRAME.

:c Continue the broken evaluation. Possible only when current frame is at the broken function.

:eval Evaluate broken function body. Possible only when current frame is at the broken function; otherwise see
:rapply.

!value Lisp variable bound to value of evaluating the body of a broken function with :eval or :rapply.

:r Reset to ALisp top loop.

:a Reset to previous break point.

(:f FN) Move focused frame down the stack to first call to function FN and make it the focused function.

:nx Move focused frame one step up the stack.

:pr Move focused frame one step down the stack.

:org Reset to frame of broken function.

:fr Print focused frame.

:rapply Re-apply focused frame. This is like :eval but can be done also when focused frame is at not the broken
function. Variable !VALUE holds result from evaluation as for :eval.

 45

 Does not work for special forms or functions with &REST arguments.

(:arg N) Get N:th argument in focused frame.

(:b VAR) Enter break loop when Lisp variable VAR is becoming bound after :c is specified.

(return x) Return value x from broken function.

The variables bound in the focused frame are inspectable in the break loop, because variables in a break loop are
evaluated in the lexical environment of the current frame.

It is possible to explicitly insert a break loop around any Lisp form in a program by using the macro:

 (HELP FORM)

When HELP is called a break loop is entered where the user can investigate the environment with the usual break
commands. The local variables in the environment where HELP was called are also available. The :EVAL command
will evaluate the FORM. Its value is then inspectable through the variable !VALUE. Very good for debugging
complex Lisp functions.

7.2. Breaking functions

Explicit break points can be put on the entry to and exit from Lisp functions by the Lisp macro

 (BREAK fn...)

For example:

> (break foo fie) Put break point on FOO and FIE
(FOO FIE)
lisp 1> (foo 1)
(FOO BROKEN) In break point of FOO
In FOO brk>?= Print parameters of FOO and their values
(X=1)
(FOO BROKEN)
In FOO brk>:eval Evaluate the body of FOO
(FIE BROKEN) The broken function is FIE
In FIE brk>?= The focused function is also FIE
(Y=1)
(FIE BROKEN)
In FIE brk>y Evaluate variable Y in scope of FIE
1
In FIE brk>(:f foo) Move down the stack to FOO
2:X <-> 1
1:--- FOO --- @ 0
(FIE BROKEN)
In FOO brk>x The focused function is FOO
1
(FIE BROKEN)
In FOO brk>:org Move back to broken function
63:Y <-> 1
62:--- FIE --- @ 0
(FIE BROKEN)

 46

In FIE brk>:args Look at arguments of broken function
(Y)
(FIE BROKEN)
In FIE brk>:r Reset Lisp
>

When such a broken function is called the system will also enter a break loop where the above break commands are
available.

Breaks on macros mean testing how they are expanded. If you break an EXTFN the argument list is in the variable
!ARGS.

The break points on functions can be removed with:

 (UNBREAK FN...)

For example:

 (UNBREAK FOO FIE)

To remove all current function breaks do:

 (UNBREAK)

7.2.1. Conditional break points

ALisp also permits conditional break points where the break loop is entered only when certain conditions are
fulfilled. A conditional break point on a function FN is specified by pairing FN with a precondition function,
PRECOND:

 (BREAK ...(FN PRECOND) ...)

When FN is called PRECOND is first called with the same parameters. If PRECOND returns NIL no break loop is
entered, otherwise it is.

For example:

 (BREAK (+ FLOATP))
 (BREAK (CREATETYPE (LAMBDA (TP)(EQ TP ’PERSON))))

Then no break loop is entered by the call:

 (+ 1 2 3)

However, this calls enters a break loop:

 (+ 1.1 2 3)

7.3. Tracing functions

It is possible to trace Lisp functions FN... with the macro:

 (TRACE FN...)

 47

When such a traced function is called the system will print its arguments on entry and its result on exit. The tracing
is indented to clarify nested calls.

Macros and special functions can also be traced or broken to inspect that they expand correctly.

Remove function traces with:

 (UNTRACE FN...)

To remove all currently active traces do:

 (UNTRACE)

Analogous to conditional break points, conditional tracing is supported by replacing a function name FN in TRACE
with a pair of functions (FN PRECOND), for example:

> (trace (+ floatp))
(+)
> (+ 1 2)
3
> (+ 1.1 2)
--> + (!ARGS=(1.1 2))
<-- + = 3.1
3.1
> (+ 1 2.1)
3.1
>

7.4. Profiling

There are two ways to profile ALisp programs for identifying performance problems:

• The statistical profiler is the easiest way to find performance bottlenecks. It works by collecting statistics on
what ALisp functions were executing at periodic sampled time points. It produces a ranking of the most
commonly called ALisp functions. The statistical profiler has the advantage not to disturb the execution
significantly, at the expense of not being completely exact.

• The wrapping profiler is useful when one wants to measure how much wall time is spent inside a particular
function. By the function profiler the user can dynamically wrap Lisp functions with code to collect statistics on
how much time is spent inside particular functions. The wrapping profiler is useful to exactly measure how much
time is spent in specific functions. Notice that the wrapping makes the instrumented function run slower so the
wrapping profiler can slow down the system significantly if the wrapped function does not use much time per
call.

7.4.1. The Statistical Profiler

The statistical profiler is turned on by:

 (START-PROFILE)

After this the system will start a background timer process that regularly (default every millisecond) update statistics
on what code was executing at that time. After starting the statistical profiler you simply run the program you wish

 48

to profile.

When the statistics is collected, the percentage most called ALisp functions is printed with:

 (PROFILE)

You may collect more statistics to get better statistics by re-running the program and then call PROFILE again.

Statistical profiling is turned off with:

 (STOP-PROFILE)

STOP-PROFILE also clears the table of call statistics.

For example;

> (start-profile)
STAT-FUNCTION
> (defun fib (x)
 (if (< x 2) 1 (+ (fib (- x 1))(fib (- x 2)))))
FIB
> (fib 30)
1346269
 > (profile)
(120 (FIB . 99.1) (DEFUN . 0.8))
> (stop-profile)

The function PROFILE returns a list where the first element is the number of samples and the rest lists the
percentage spent in each function. Profile takes as argument an optional cut-off percentage. For example:

> (profile 1)
(120 (FIB . 99.1))
>

The sampling frequency is controlled with the global variable _PROFILER-FREQUENCY_. It is by default set to
0.001 meaning that up to 1000 samples are made per second. In practice the actual number of samples can be
smaller.

The sampling is also influenced by the value of the global variable _EXCLUDE-PROFILE_ containing a list of
functions excluded from sampling. The sampler registers the first call on the execution stack not in this list. For
advanced profiling it is sometimes useful to exclude the most commonly called functions by adding more functions
to _EXCLUDE-PROFILE_.

7.4.2. The Wrapping Profiler

To collect statistics on how much real time is spent in specific ALisp functions and how many times they are called
use the wrapping profiler:

 (PROFILE-FUNCTIONS FN...)

For example:

 (PROFILE-FUNCTIONS SUBSET GETFUNCTION)

 49

The calling statistics for the profiled functions are printed (optionally into a file) with:

 (PRINT-FUNCTION-PROFILES &optional FILE)

The calling statistics are cleared with:

 (CLEAR-FUNCTION-PROFILES)

Function profiling can be removed from specific functions with:

 (UNPROFILE-FUNCTIONS FN...)

To remove all function profiles do:

 (UNPROFILE-FUNCTIONS)

Analogously to conditional break points, conditional function profiling is supported by specifying pairs (FN
PRECOND) as arguments to PROFILE-FUNCTIONS, e.g.

 (PROFILE-FUNCTIONS (CREATETYPE (LAMBDA(X)(EQ X ’PERSON))))

The function profiler does not double measure recursive functions calls. When a functions call causes error throws it
is not measured.

7.5. System functions for debugging

We conclude this chapter with a list of all ALisp system functions useful for debugging:

Function Type Description

(BACKTRACE DEPTH FRAME FILTERED)
 EXTFN Print a backtrace of the contents of the current variable binding

stack. DEPTH indicates how many function frames are printed. If
FILTERED is true then arguments of EXTFNs are excluded from
the backtrace. FRAME indicates at what stack frame number the
backtrace shall start. Default is top of stack.

BATCH GLOBAL If this variable is true no break loop is entered after errors are
detected. Instead the system make a backtrace (command :btv Sec.
7.1) and resets the system. Useful when running in batch or in
servers.

(BREAK FN...) MACRO Put break points on entries to Lisp functions FN... so that an
interactive break loop is entered when any of the broken functions
are called (Sec. 7.1).

(CLEAR-FUNCTION-PROFILES) LAMBDA Clear the statistics for wrapping profiling (Sec. 7.4.2).
(DEBUGGING FLAG) EXTFN If FLAG is true the system will start running in debug mode, where

warning messages are printed and the system checks assertions.
Turn off debug mode by calling with FLAG false. Notice that the
system by default is in debug mode when Lisp mode is entered, but
can be turned on by calling (DEBUGGING NIL).

(DUMPSTACK &optional FRAME) EXTFN Print all the contents of the variable binding stack. If FRAME is
provided it specifies the starting stack frame number; otherwise the
printing starts at the current top of the stack.

 50

(HELP FORM) MACRO To insert explicit break points in Lisp code. Puts a break around
evaluation of FORM. For example: (HELP “at FOO”)

(IMAGE-EXPANSION RATE MOVE) EXTFN When the database image if full it is dynamically expanded by the
system. This function controls the expansion. RATE is how much
the image is to be expanded (default 1.25). If MOVE is true the
image will always be copied to a different place in memory after
image expansion. If MOVE is false it may or may not be copied. To
test system problems related to the moving of the image the
following call will make the image move a lot when data is loaded:
(IMAGE-EXPANSION 1.0001 T)

(LOC X) EXTFN Return the location (handle) of Lisp object X as an integer. The
inverse is (VAG X).

(PRINT-FUNCTION-PROFILES FILE)
 LAMBDA Print statistics on time spent in profiled functions (Sec 7.4.2). FILE

is optional.
(PRINTFRAME FRAMENO) EXTFN Print the variable stack frame numbered FRAMENO.
(PRINTSTAT) EXTFN Print storage usage since the last time PRINTSTAT was called.

Good for tracing storage leaks and usage.
(PROFILE) LAMBDA Print statistics of time spent in ALisp functions after a statistical

profiling execution (Sec 7.4.1).
(PROFILE-FUNCTIONS FN...) MACRO Wrap the ALisp functions FN... with code to collect statistics on

how much real time was spend inside them (Sec. 7.4.2).
(REFCNT X) EXTFN Return the reference count of X. For debugging of storage leaks.
(SETDEMON LOC VAL) EXTFN Set up a system trap so that when the word at image memory

location LOC becomes equal to the integer VAL the system will
call the Lisp function (CATCHDEMON LOC VAL) which by
default is defined to enter a break loop. The trap is immediately
turned off when the condition is detected, or when a regular
interrupt occurs. Very useful for detecting memory corruption in C-
code interfaced to the system. See also Section 10.4.

(START-PROFILE) LAMBDA Start statistical profiling of a Lisp program. (Sec. 7.4.1)
(STOP-PROFILE) LAMBDA Stop profiling the ALisp program. (Sec. 7.4.1)
(STORAGESTAT FLAG) LAMBDA If FLAG is true the top loop prints how much data was allocated

and deallocated for every evaluated ALisp form in the ALisp top
loop (or AmosQL statement in the Amos II top loop). Very useful
for finding storage leaks.

(STORAGE-USED FORM TAG) SPECIAL Evaluate FORM and print a report on how many data objects of
different types were allocated by the evaluation. TAG is an optional
title for the report. Good for finding storage leaks.

(TIMER FORM) SPECIAL Print the real time spent evaluating FORM. Often used in
combination with RPTQ (Sec. 3.12).

(TRACE FN...) MACRO Put a trace on the functions FN... (Sec 7.3). The arguments and the
values will then be printed when any of these functions are called.
Remove the tracing with UNTRACE.

(TRACEALL FLG) EXTFN Trace all function calls if FLG is true. The massive tracing is turned
off with (TRACEALL NIL).

(TRAPDEALLOC X) EXTFN Set up a demon so that the break loop is entered when the object X
is deallocated. Good for finding out where objects are deallocated
by the garbage collector.

(UNBREAK FN...) MACRO Remove the break points around the specified functions (Sec. 7.2).
(UNPROFILE-FUNCTIONS FN...) MACRO Remove function profiles from the specified functions (Sec. 7.4.2).

 51

(VAG X) EXTFN Return the ALisp object at image location X. The inverse is (LOC
X).

(VIRGINFN FN) LAMBDA Get the original definition of the function associated with the
symbol FN, even if FN is traced or broken.

8. Code search and analysis

As Lisp code is also data it is stored in the internal database image. A number of system functions are available for
searching and analyzing Lisp code in the image. This can be used for finding functions, printing function
documentation, cross-referencing functions, analysing correctness of functions, etc.

8.1. Emacs subsystem

ALisp can run as a subprocess to Emacs or XEmacs. The most convenient way to develop Alisp code is to run from
a shell within XEmacs. Emacs should be configured using the file init.el. It provides extensions to Emacs for
finding Lisp code and for evaluating Lisp by ALisp. Place init.el in the initialization folder of Emacs (usually
/home/.emacs) or XEmacs (usually %HOME%\.xemacs).

When Emacs is started give the command:

M-x-shell

This will start a new Windows (or Unix) shell inside Emacs. You can there give the usual Windows (Unix)
commands. Run there Amos II by issuing the shell command:

 amos2

If you are developing Lisp code, enter Lisp mode with the command:

lisp;

8.2. Finding source code

The system contains many Lisp functions and it may be difficult to find their source code. To alleviate this, there
are Lisp code search functions for locating the source codes of Lisp functions and macros loaded in the database
image having certain properties. Most code search functions print their results as file positions consisting of file
names followed by the line number of the source for the searched function. Only source code of LAMBDA
functions and macros has file positions.

The code search facility requires the system to be installed with code search enabled. It is enabled if the environment
variable RELEASING is NOT set when system is installed. Furthermore, in order to actually edit the source code all
source files must reside where they were when the system was installed. Thus certain installations may not have
access to the source code or to the program database.

If Emacs is configured properly, the Emacs key F1 (defined in init.el) can be used for jumping to the source code of
a file location at the mouse pointer. For example, the function (FP FN) prints the file position of a function:

> (fp 'printl)

 52

PRINTL C:/AmosNT/lsp/orginit.lsp 530
T

If you place the pointer over the file name and press F1 you should be placed in a separate Emacs window at the file
position where the function PRINTL is defined. If F1 is undefined you have not installed init.el properly.

If you have edited a function with Emacs it can be redefined in ALisp by cut-and-paste. The key F2 will send the
form starting at the pointer position in the file source window to the shell window for evaluation.

If you don’t have the source code you can still look at the definition of PRINTL using PP:

> (pp printl)
(DEFUN PRINTL (&REST L)
 "Print list of arguments on standard output"
 (PRINT L))
(PRINTL)

PP prints the definitions of functions from their internal representation in the database image. The appearance in the
source file is normally more informative, e.g. including comment lines and with no macros expanded.

Often you vaguely know the name of a function you are looking for. To search for a function where you only know
a part of its name use the CommonLisp function (APROPOS FN). For example:

> (apropos 'ddd)
CADDDR C:/AmosNT/lsp/orginit.lsp 47
 ""
CDDDDR C:/AmosNT/lsp/orginit.lsp 45
 ""
CDDDR
 EXTFN

Here we see that the function CDDDR is an external function with no source code. We can inspect its definition and
see that it is an EXTFN with:

> (pp cdddr)
(DEFC 'CDDDR #[EXTFN1 CDDDR])
(CDDDR)

APROPOS prints the documentation of LAMBDA functions and macros. For example:

> (apropos 'printl)
PRINTL C:/AmosNT/lsp/orginit.lsp 530
 "Print list of arguments on standard output"
NIL

The documentation of a function should be given as a string directly after the formal parameter list, as for PRINTL.

To find where a structure is defined you can search for its construction. For example:

> (apropos 'make-selectbody)
MAKE-SELECTBODY C:/AmosNT/lsp/function.lsp 46
 ""

 53

Function Type Description

(DOC FN) LAMBDA Return the documentation string for a function.
(FP FUNCTION) LAMBDA Print the file position of a function definition. The file position of

the currently focused function in the break loop is printed with the
command:

 :fp
(GREP STRING) LAMBDA Print the lines matching the string in all source files currently

loaded in the database image. This can be slow.
(CALLING FN &optional LEVELS FILE)
 LAMBDA Print the file positions for the functions calling the function FN.

LEVELS specifies how many levels of functions that call FN
indirectly are printed (default 1). FILE prints to a file.

(CALLS FN &optional LEVELS FILE)
 LAMBDA Print the file positions for the functions called from function FN.

LEVELS specifies how many levels of functions that are called
indirectly by FN are printed (default 1). FILE prints to a file.

(USING S) LAMBDA Print the file positions for the functions whose definitions contain
the symbol S. S is usually a variable name.

(MATCHING PAT) LAMBDA Print the file positions of functions whose definitions match
somewhere the code pattern PAT. A pattern is an S-expression
where the symbol * matches everything,. For example:
(MATCHING '(map* '* . *))
matches functions containing, e.g., the form
(mapcar 'print l).

8.3. Code verification

ALisp has a subsystem for verifying Lisp code. The code verification goes through function definitions to search for
code patterns that are seem errorneous. It also looks for calls to undefined functions, undefined variables, etc. The
code verifier is automatically enabled incrementally when in debug mode. However, full code verification requires
that all functions in the image are analyzed, e.g. to verify that all called functions are also defined. To verify fully all
functions in the image, call:

(VERIFY-ALL).

It goes through all code and prints a report when something incorrect is found. For example:

> (verify-all)
NIL All Lisp functions in image OK
3.75 s
> (defun foo (x)(fie x))
FOO
> (verify-all)
Call to undefined function FIE in FOO. FOO was not OK
NIL
3.75 s

 54

9. The Storage Manager

ALisp is integrated with a storage management subsystem callable from C. The storage manager is responsible for
allocation and deallocation of physical objects inside the database image. The C implementor has the choice of
allocating data persistently inside the database image by using a set of primitives provided by the storage manager.
Alternatively data can be allocated transiently by using the usual C routines malloc, etc. Persistency in this case
means that data allocated in the database image can be saved on disk and later restored. Persistent data is stored on
disk when the user issues the AmosQL statement save or call Lisp’s ROLLOUT function. The image is restored
when restarting the system with the image file as command line argument. By contrast, transient data disappears
when the system is exited. The C/C++ programmer can define own persistent data structures by using a set of
storage manager primitives.

Another important service of the storage manager is to provide a garbage collection subsystem that automatically
deallocates persistent memory no longer in use in the database.

The storage manager is actually independent of the ALisp interpreter. Its description is in this document as
knowledge of the storage manager is needed for defining external Lisp function.

9.1. Handles

All access to physical objects is made through handles which are indirect identifiers for physical data records in C.
The representation of handles is currently unsigned integers. In order to make the application code both fast an
independent on the internal representation of handles, the handles are always manipulated through a set of C macros
and utility functions. The interface is furthermore connected to an automatic garbage collector so that data no longer
used is reclaimed when using those macros/functions. The interface between the storage manager is defined by the
header file storage.h.

Handles to persistent objects must be declared of C type oidtype and must always be initialized to the global C
constant nil. oidtype and nil are defined in storage.h. For example:

 oidtype myhandle = nil;

This equivalent to the C macro dcloid:

 dcloid(myhandle);

9.2. Physical Objects

With every handle there is an associated C structure, the physical object, stored in the database image and holding
the value of the handle. The physical data objects are C structures containing the data to be stored persistently
together with a physical type identifier identifying the type of the object. The layout of the physical data object
depends on the datatype. However, the first two bytes of a physical object are always reserved for the system; the
succeeding bytes are used for storing the data. Every persistent data item must be represented as physical objects,
including literals such as integers and strings. For example, integers are represented by this structure:

struct integercelltype
{
 objtags tags;
 short int filler;

 55

 int integer;
};

The field tags is used by the system, the field integer stores the actual integer value, and filler aligns the
integer to a full-word.

Every physical type has an associated type identifier number and a unique type name string known to the storage
manager. A number of physical types are predefined, including LIST, SYMBOL, INTEGER, REAL, EXTFN
(ALisp function defined in C), CLOSURE (internal ALisp closures), STRING, ARRAY (1D fixed size arrays),
STREAM (file streams), TEXTSTREAM (streams to text buffers), HASHTAB (hash tables), ADJARRAY
(dynamically extensible arrays), and BINARY (bit strings). In storage.h there are structure definitions defined
for the physical representation of most of the built-in types. The convention is used that if the type is named xxx the
template has the name xxxcell, e.g. REAL has a template named realcell, etc. The type identification numbers
for most built-in types are also defined as C macros in storage.h, with the convention that a type named xxx has
a corresponding identification number XXXTAG if it is defined as a C macro or xxxtag if it is a global C variable.

The C/C++ programmer can extend the built-in set of physical datatypes with new persistent data structures through
the C function a_definetype, explained below. It defines to the storage manager the properties of the new data
type.

9.3. Logical Data Objects

Notice the difference between physical and logical objects: Physical data objects are C record structures stored in
the database image while logical data objects are object descriptors references through AmosQL. Logical data
objects are internally represented by one or several physical data objects. For example, Amos II objects of logical
data type INTEGER are directly represented by the above mentioned physical data objects also named INTEGER.
Similarly, other simple literal objects (e.g. real numbers and strings) are internally represented as directly
corresponding physical objects. More complex objects, e.g. the logical datatype FUNCTION, are represented by
data structures consisting of several physical objects of different types. Surrogate objects in AmosQL are
represented as physical objects of a particular kind named OID describing properties of the logical object identifier
of the surrogate. One property of an OID object is a numeric identifier maintained by the storage manager; another
one is a handle referencing the Amos II type(s) of the logical object. References to OID objects are very common in
the database, e.g. to represent arguments or values of functions, extents of types, etc.

The AmosQL user cannot directly manipulate physical objects; they can only be manipulated in C/C++ or ALisp.

9.4. Dereferencing

In order to access or change the contents a physical object given a handle it has to be converted from a handle into a
C pointer to the corresponding physical object in the database image. This process is called to dereference the
handle. The dereferencing of physical data objects is very fast and does not involve any data copying; it involves
just an offset computation.

Once the physical object has been dereferenced its contents can be investigated by system provided C macros and
functions or directly by C pointer operations. The header of a physical object (type objtags) is maintained by the
storage manager. It contains the identification of its physical type (1 byte) and a reference counter (1 byte) used by
the automatic garbage collector.

 56

The following C macro dereferences a handle:

dr(x,str)

dr returns the address of the record referenced by the handle x casted as a C struct named str.

For example, the following C function prints an integer referenced by the handle x:

void printint(oidtype x)
{
 struct integercell dx = dr(x,integercell);
 printf(“x = %d\n”,dx->integer);
 return;
}

Notice that the parameter x must be a handle referencing an object of type INTEGER, otherwise the system might
crash. To make printint safe it therefore should check that x actually references an integer. The following C
macro can be used for investigating the type of a physical object handle:

a_datatype(x)

a_datatype returns the type identifier of a handle x.

For example, the function printint2 checks that x actually is an integer before printing its value:

void printint2(oidtype x)
{
 if(a_datatype(x) == INTEGERTAG)
 printf(“x = %d\n”,dr(x,integercell)->integer);
 else printf(“X is not an integer\n”);
 return;
}

WARNING: Storage manager operations may invalidate dereferenced C pointers because the derefrenced objects
might move to other memory locations when the image is expanded. Thus dereferenced pointers may become
incorrect once a system feature that causes the image to expand is called. Object allocation is the only system
operation that may cause this. Thus, if a system function is called that is suspected to do object allocation (most do),
the dereferencing must be redone. It is therefore safer to always dereference through dr as in printint2 rather
than saving the C pointer as in printint.

9.5. Assigning handles to locations

In order for the storage manager and garbage collector to function correctly, assignments of C locations (variables or
fields) of type oidtype must use the C macro

a_setf(location,value);

a_setf corresponds to an assignment, location=value, but, unlike an assignment, it also updates the
reference counter of value so it is increased after the assignment. The reference counter increment indicates to the
system that the C location x holds a reference to the physical object and it therefore cannot be deallocated until the
handle location is released. A handle location x is released with the C macro:

a_free(x)

 57

If the reference counter of a physical object reaches 0 the physical object is passed to the garbage collector for
deallocation. Thus, unlike the C function free, a_free will deallocate x only when there is no other location
holding a reference to it.

To handle reassignments of locations correctly, a_setf releases the handle previously referenced from the handle
x; thus it decreases the reference counter of handles previously referenced from the handle x.

Lisp symbols (e.g. nil) are not garbage collected and thus not reference counted.

Notice that ocations must be assigned to some handle before a_setf can be used, otherwise the system is likely to
crash when trying to release a non-existing handle. It is therefore necessary to always initialize C handle locations to
the constant nil (referencing the symbol NIL) when declaring them. An alternative it to use the macro a_let the
first time a location is assigned a handle. It assumes the old value of x was uninitialized:

a_let(location,value)

9.6. Allocating physical objects.

Physical objects can be allocated only through a number of storage manager primitives (not through e.g. malloc).
When a physical object is allocated it initializes the reference counter to 0. The built-in datatypes have allocation
macros and functions defined in storage.h, e.g.:

mkinteger (xx) allocates a new integer object.
mkreal (xx) allocates a new double precision real number object.
mkstring (xx) allocates a new string object.
mksymbol (xx) allocates or gets the symbol named capitalized xx.
cons (x,y) allocates a new list cell.

For example, the following C function adds two integers:

oidtype add(oidtype x, oidtype y)
{
 int sum;

 if(a_datatype(x) != INTEGERTAG ||
 a_datatype(y) != INTEGERTAG)
 {
 printf(“Cannot add non-integers\n”);
 exit(1); Should call error manager here instead.
 }
 sum = dr(x,integercell)->integer + dr(y,integercell)->integer;
 return mkinteger(sum);
}

The following code fragment allocates two integers, calls add, and prints the sum.

{
 oidtype x=nil, y=nil, s=nil; // handles must be initialized to nil!

 a_setf(x,mkinteger(1)); // assign x to new integer 1
 a_setf(y,mkinteger(2)); // assign y to new integer 2

 58

 a_setf(s,add(x,y)); // assign s to new integer being sum of a x and y
 printf(“The sum is %d\n”,dr(s,integercell)->integer);
 a_free(s); // release locations s, x, y
 a_free(x);
 a_free(y);
}

In storage.h, for each built-in storage type there is a C constant (upper case) or a variable (lower case)
containing the identifier for the type.

Type-name constant/variable Short description

LIST LISTTYPE Lists
SYMBOL SYMBOLTYPE Symbols
INTEGER INTEGERTYPE Integers
REAL REALTYPE Double precision reals
EXTFN EXTFNTYPE ALisp function in C
CLOSURE CLOSURETYPE ALisp function closure
STRING STRINGTYPE Strings
ARRAY ARRAYTYPE 1D Arrays
STREAM STREAMTYPE File streams
TEXTSTREAM TEXTSTREAMTYPE String streams
SOCKET sockettype Socket streams
HASHTAB HASHTYPE Hash tables
HASHBUCKET HASHBUCKETTYPE Internal to hash tables
OID objecttag Object identifiers
HISTEVENT histeventtype Update events

For most built-in datatypes there are C macros or functions for construction and access. For example, to allocate a
new handle of type STRING with the content “Hello world” you can use the macro mkstring that returns a handle
to the new string:

{
 dcloid(mystring);
 ...
 a_setf(mystring,mkstring("Hello world"))
 ...
 a_free(mystring);
};

To dereference a handle referencing a STRING object the macro getstring can be used:

{
 dcloid(mystring};
 char *mystringcont;

 a_setf(mystring,mkstring("Hello world"));
 mystringcont = getstring(mystring);
 printf("%s\n",mystringcont);
 a_free(mystring);
};

The following are examples of C library functions and macros used for manipulating the built-in data types:

oidtype mkinteger(int x) (macro) Construct handle for a new integer
int integerp(oidtype x) (macro) TRUE if X is a handle for an integer

 59

int getinteger(oidtype x) (macro) Dereference a handle for an integer

oidtype mkreal(double x) (macro) Construct handle for a new real
int realp(oidtype x) (macro) TRUE if X is a handle for a real
double getreal(oidtype x) Dereference a handle for a real

oidtype mkstring(char *x) (macro) Create handle for a new string
int stringp(oidtype x) (macro) TRUE if X is a handle for a string
char *getstring(oidtype x) (macro) Dereference a handle for a string

oidtype new_array(int size,oidtype init)
 Construct handle for a new array with elements init
int arrayp(oidtype x) TRUE if X is a handle for an array
int a_arraysize(oidtype arr) return the array size
oidtype a_seta(oidtype arr,int pos,oidtype val)
 Set an array element
oidtype a_elt(oidtype arr,int pos)
 Retrieve array element
oidtype a_vector(oidtype x1,...,xn,NULL)
 Create a new array and its elements x1 ... nn.

oidtype cons(oidtype x,oidtype y) Create handle for a new list cell
int listp(oidtype x) (macro) TRUE if X is a list cell
oidtype hd(oidtype x) (macro) Head of list cell
oidtype tl(oidtype x) (macro) Tail of list cell
oidtype a_list(oidtype x1,...,xn,NULL)
 Create new list of x1 ... xn

oidtype mksymbol(char *x) (macro) Create a new symbol
int symbolp(oidtype x) (macro) TRUE if X symbol
oidtype globval(oidtype x) (macro) Get global value of symbol.
char *getpname(oidtype x) (macro) Get print name of symbol

a_print(oidtype x) Print object of any type

oidtype t Symbol T representing TRUE
oidtype nil Symbol NIL representing empty list and FALSE

9.7. Storage types

This subsection describes how to introduce new physical storage types into Amos II. This is required when new C
data structures need to be defined for Amos II.

In storage.h the basic built-in physical storage type tags are declared as macros. The include file also contains
the record templates for each storage type.

There is a global type table which associates a number of optional C functions with each physical object type. A new
storage type is introduced into the system (thus expanding the type table) with a call to the C function
a_definetype:

int a_definetype(char *name,
 void (*dealloc_function) (oidtype),

 60

 void (*print_function) (oidtype,oidtype,int))

a_definetype adds a new type named name to the type table and returns the new type identifier as an integer.

dealloc_function is a required C function taking an object of the new type as argument. It is a destructor
called by the garbage collector when the object is deallocated. It should then release all locations referenced
by the object and call storage manager primitives to deallocate the storage occupied by the object.

print_function is an optional print function called by PRINT to provide a customized printing of physical
objects of the new type. See section x.

9.8. Streams

ALisp has several datatypes representing streams:

STREAM represents regular C file streams.
TEXTSTREAM represents streams over buffers in the database image.
SOCKET represents socket streams for communication with other ALisp systems.
PIPE represent pipes for communication between child and parent processes in

Unix.

The following system standard streams are defined:

oidtype stdinstream for C’s standard input stream

oidtype stdoutstream for C’s standard output stream

oidtype stderrstream for C’s standard error stream

Streams are physically represented as other data types but with some special stream attributes in the beginning of the
structure template:

struct xxxcell
{
 objtags tags;
 short int bytes; /* Total size of object in bytes, incl. header */
 char autoflush; /* Flush after each item and new line */
 char filler[3]; /* Unused flags */
 int line_num; /* Current line number */
 oidtype logstream; /* Stream to copy input to if non-NIL */
 /*** end of stream header ***/

The attributes above must always be present for stream templates. Additional specific attributes can be added after
the end of the stream header. Once the data type has been defined using definetype the newly created type can be
made into a stream by a call to a_define_stream_implementation:

int a_define_stream_implementation(int tag, /* Storage type */
 int(*getc)(oidtype),
 int(*ungetc)(int,oidtype),
 int(*feof)(oidtype),

 61

 int(*puts)(char*,oidtype),
 int(*putc)(int,oidtype),
 int(*fflush)(oidtype),
 int(*fclose)(oidtype));

The first argument, tag, is the type tag (returned by definetype) of the type to be made a stream. Each stream
should have the following associated functions (methods):

int getc(oidtype stream) Returns the next character in stream.
int ungetc(int c, oidtype stream)
 Put back character c in stream.
int feof(oidtype stream) Return TRUE if end-of-file reached.
int putc(int c, oidtype stream)
 Write character c to the stream
Int readbytes(oidtype stream, void *block, unsigned int len)
 Read a block of data from the stream. The slower putc method is used if

this method is NULL.
int writebytes(oidtype stream, void *block, unsigned int len)
 Write a block of data to the stream. The slower getc method is used if this

method is NULL.
int fflush(oidtype stream) Flush stream buffer contents.
int fclose(oidtye stream) Close the stream.

Once these methods are defined and registered the user can use the following generic stream functions to manipulate
the new stream:

int a_getc(oidtype stream); Read one character
int a_ungetc(int c, oidtype stream); Unread one character
int a_puts(char *str,oidtype stream); Write string
int a_writebytes(oidtype stream, void *buff, unsigned int len);
 Write block
int a_putc(int c, oidtype stream); Write a character
int a_readbytes(oidtype stream, void *buff, unsigned int len);
 Read block
int a_fclose(oidtype stream); Close stream
int a_feof(oidtype stream); Test for end-of-file
int a_fflush(oidtype stream); Flush stream buffer

The performance of stream management can be improved by moving bulks of data to or from the stream through
calls to a_printbytes and a_readbytes. If the corresponding methods are not registered with a stream, writing
to and reading from the stream is slower.

9.8.1. Marshalling objects

Streams are often used for writing object in such a format that they can later be restored by reading. This is
particularly important when using streams to communicate data between ALisp peers, e.g. using sockets (Section
5.3). The Lisp function PRINT prints object structures on a stream in such a format (S-expression) that copies of the
objects can later be restored by using READ. This PRINT and READ are Lisp’s generic (de-)marshalling functions.
Lisp’s S-expression notation provides marshalling and demarshalling for the basic Lisp datatypes. In addition

 62

customized (de-)marshalling can be specified for user defined storage type, as will be described below.

In C the following functions can be used for (de-)marshalling S-expressions:

oidtype a_read(oidtype stream)
 Read (unmarshal) S-expression from stream
oidtype a_print(oidtype s) Print S-expression a followed by a line feed on stdoutstream, normally

for debugging.
oidtype a_printobj(oidtype s, oidtype stream)
 Print S-expression s followed by a line feed as delimiter on stream.
oidtype a_prin1(oidtype s, oidtype stream, int princflg)
 Print S-expression s on stream. If princflg is FALSE the printout be

marshalled for subsequent reading; if princflg is TRUE object will be
written as PRINC (sec. xx) and not readable. Notice that, as no delimiter is
inserted as with a_printobj, it is up to the user to ensure proper object
delimitation is.

oidtype a_terpri(oidtype stream)
 Write a line feed on stream.

10. Interfacing Lisp with C

An ALisp function can be implemented as a C function and C functions can call ALisp functions. ALisp and C can
also share data structures without data copying or transformations. The error management in ALisp can be utilized
in C as well for uniform and efficient error management.

In order to interface ALisp with C/C++ you need to download the Amos II development version. You must include
the file alisp.h in your C program. In the development version, the file democpp.cpp contains a simple C
program that calls ALisp and where ALisp also calls C.

This section describes how to call C functions from ALisp, and how to call ALisp functions from C.

10.1. Calling C from Lisp

As a very simple example of an external Lisp function we define an ALisp function HELLO which prints the string
‘Hello world’ on the standard output. It has the C implementation:

#include "alisp.h"
oidtype hellofn(bindtype env)
{
 printf(“Hello world\n”);
 return nil;
}

The include file alisp.h contains all necessary declarations for implementing external Lisp functions in C;
External Lisp function definitions must always return handles of type oidtype. Do not forget the return
statement!

 63

In order to be called from Lisp, an external Lisp function implementation has to be registered with a symbolic ALisp
name, in this case the symbol HELLO, by calling:

extfunction0(“HELLO”,hellofn);

A system convention is that an external Lisp function named XXX is named xxxfn in C, as for HELLO.

The call to register an external Lisp function should be done in a main C program, the driver program, after the
system has been initialized (i.e. after init_amos or a_initialize is called). The following driver program
initializes the system, registers HELLO, and calls the ALisp read-eval-print loop with prompter string ‘Lisp>’.

#include "alisp.h"

oidtype hellofn(bindtype env)
{
 printf(“Hello world\n”);
 return nil;
}

void main(int argc, char **argc)
{
 init_amos(argc,argv);
 extfunction0(“HELLO”,hellofn);
 evalloop(“Lisp>”);
}

When the above program is run the user can call HELLO from the read-eval-print loop by typing

(hello)

10.1.1. Defining external Lisp functions in C

Lisp functions can be implemented as external Lisp functions in C. An external Alisp function fn with optional
arguments x1, x2,..., xn must have the following signature in C:

oidtype fn(bindtype env,oidtype x1,oidtype x2,..,oidtype xn)

The first argument env is the binding environment to be used by the system for error handling, memory
management, and other things.

For example, the following function implements an ALisp function to add two numbers:

oidtype addfn(bindtype env, oidtype x, oidtype y)
{
 int ix, iy, r; // will hold integer values of x, y and result

 IntoInteger(x,ix,env); // Retrieve value of integer x into ix and raises
 // ALisp error if x is not an integer object
 IntoInteger(y,iy,env);
 r = ix + iy;
 return mkinteger(r);
}

addfn is registered with

 64

exfunction2(“add”,addfn);

The number ’2’ after ’extfunction’ indicates that this ALisp function takes two arguments.

External Lisp functions need to be very careful to check the legality of the handles they receive, so that the system
never crashes. To check that a handle is of an expected type use the C macro:

OfType(x,tpe,env)

A standard error will be generated if x does not have the type tag tpe. (For integers the above used macro
IntoInteger is a convenient alternative).

External Lisp functions are registered (assigned to ALisp symbols) by calling a system C function:

extfunctionX(char *name, Cfunction fn);

name is the ALisp name for the external Lisp function
fn is the address of the C function.

Different versions of extfunctionX are available depending on the arity X of the external Lisp function. For
example,

extfunction2(“add”,addfn);

There are corresponding ALisp registration functions for functions with arity 0, 1, 2, 3, 4, 5 named
extfunction0, extfunction1, etc.

When a physical object handle whose reference counter has been managed by a_setf is to be returned from a C-
function the following C-macro should be used:

a_return(x);

a_return returns x from the C-function after the reference counter of value has been decreased without
deallocating x if the counter reaches 0.

For example, the following external Lisp function calls addfn twice to sum three integers:

oidtype add3fn(bindtype env, oidtype x, oidtype y, oidtype z)
{
 oidtype s=nil;

 a_setf(s,addfn(env,x,y));
 a_setf(s,addfn(env,s,z));
 a_return(s);
}

The variable s holds the result from add3fn. If it had been returned by the usual statement

 return(s);

the result object would never be released from the location s and would therefore never be deallocated.

For example, the following function reverses a list:

 65

oidtype reversefn(bindtype env, oidtype l)
{
 oidtype lst=nil, res = nil;

 a_setf(lst,l);
 while(listp(lst))
 {
 a_setf(res,cons(hd(lst),res));
 a_setf(lst,tl(lst));
 }
 a_free(lst);
 a_return(res);
}

Register REVERSE with:

extfunction1(“REVERSE”,reversefn);

WARNING: Never try to assign C function parameters (such as l in the example) with a_setf; it will clobber the
garbage collector. Instead the parameter l is assigned to the local variable lst in order to subsequently use
a_setf.

WARNING: The C implementation of an external Lisp function must always return a legal handle, otherwise the
system might crash. It is therefore recommended to run the system in ’debug mode’ while testing external Lisp
function where the system always checks the legality of data passed to ALisp from C.

10.1.2. Variable arity external Lisp functions

Variable arity external functions accept any number of arguments. External Lisp functions with more than 5
arguments also need to be defined as variable arity functions. Variable arity external Lisp functions have the
signature:

oidtype fn(bindtype args,bindtype env)

where env is the binding environment for errors, and args is a binding environment representing the actual
arguments of the function call. To access argument number i use the C macro:

nthargval(args,i)

The arguments are enumerated from 1 and up.

The C function

int envarity(bindenv args)

returns the actual arity of the function call.

For example, the following ALisp function sumfn adds an arbitrary number of integer arguments:

oidtype sumfn(bindtype args,bindtype env)
{
 int sum=0, arity = envarity(args), i, v;

 66

 for(i=1;i<=arity;i++)
 {
 IntoInteger(nthargval(args,i),v,env);
 sum = sum + v;
 }
 return mkinteger(sum);
}

Variable arity functions are the registered to the system with extfunctionn:

extfunctionn("SUM",sumfn);

The Lisp function LIST has the following implementation:

oidtype listfn(bindtype args,bindtype env)
{
 oidtype res=nil;
 int arity=envarity(args), i;

 for(i=arity;i>=1;i--)
 {
 a_setf(res,cons(nthargval(args,i),res));
 }
 a_return(res);
}

Notice how the iteration over the arguments is done in reverse order to get the correct list element order.

10.1.3. Defining special forms

Special forms are external Lisp functions whose arguments are not evaluated by the ALisp interpreter when the C
implementation function is called.

C functions implementing special forms have the signature:

oidtype fn(bindtype args,bindtype env)

Analogous to no variable arity functions the macros envarity and nthargval can be used to investigate the
actual arguments. The difference is that nthargval here returns the unevaluated value, unlike for variable arity
functions where evaluated values are returned.

For example, the following C function implements the ALisp special form QUOTE:

oidtype quotefn(bindtype args, bindtype env)
{
 return nthargval(args,1);
}

Special forms are registered using extfunctionq:

extfunctionq("QUOTE",quotefn);

For evaluating unevaluated forms this system function can be used:

 67

oidtype evalfn(bindtype env, oidtype form)

For example, the following C function implements the special form (WHILEA PRED FORM1 FORM2 ...) that
iteratively executes FORM1 etc. while PRED is non-nil:

oidtype whileafn(bindtype args, bindtype env)
{
 oidtype cond = nil, v = nil;
 int arity = envarity(args), i;

 a_setf(cond,nthargval(args,1));
 for(;;)
 {
 a_setf(v,evalfn(env,cond)); /* Evaluate condition */
 if(v == nil) /* Condition false */
 {
 a_free(v); /* Release v and cond before returning */
 a_free(cond);
 return nil;
 }
 for(i=2;i<=arity;i++)
 {
 a_setf(v,evalfn(env,nthargval(args,i)));
 }
 }
}

Notice that v and cond must be released before the function is exited. Furthermore, the above definition is not fully
correct because if evalfn fails, because of some logical error in the evaluated form, the error management system
will make evalfn never return. Thus, in case of an error in the evaluation, the storage referenced by v and cond
will never be deallocated. Another version of whilea which also manages this memory deallocation correctly will
be presented in the next section.

10.2. Error management in C

ALisp has its own error management system integrated with the storage manager. In order for the storage manager
to correctly release data after failures, abnormal function exits should always use the system error management,
rather than e.g. directly calling C’s longjmp or C++ error management.

10.2.1. Unwind Protection

To unconditionally catch failed operation the unwind protect mechanism is used. This is necessary sometimes to
guarantee that certain actions are performed even if some called function terminates abnormally. For example, space
may need to be deallocated or files be closed. For this purpose ALisp provides an unwind-protect feature in C,
similar to what is provided in Lisp (Sec. 6.1). Unwind protection is provided through the following three macros:

{unwind_protect_begin; /* Always new block */
 main code
 unwind_protect_catch; /* This statement MUST ALWAYS be executed */
 unwind code
 unwind_protect_end;} /* Will continue abnormal evaluation */

 68

The main code is the code to be unwind protected. The unwind code is always executed both if the main code
fails or succeeds. In the unwind code, a flag, unwind_reset, is set to TRUE if the code is executed as the result of
an exception. The unwind code is executed outside the scope of the current unwind protection. Thus, exceptions
occurring during the execution of unwind code is unwound by the next higher unwind protection.

WARNING: The unwind_protect_end code must be executed; never return directly out of the main code
block. If unwind_protect_end is not executed after an exception, then the exception is not continued. Always
execute unwind_protect_end, unless you want to catch all possible exceptions.

For example, a correct version of while that releases memory also in case of an error in the evaluation can be
defined as follows:

oidtype whilebfn(bindtype args, bindtype env)
{
 oidtype cond = nil, v = nil;
 int arity = envarity(args), i;

 {unwind_protect_begin
 a_setf(cond,nthargval(args,1));
 for(;;)
 {
 a_setf(v,evalfn(env,cond)); /* Evaluate condition */
 if(v == nil) /* Condition false => exit for loop */
 break;
 for(i=2;i<=arity;i++)
 {
 a_setf(v,evalfn(env,nthargval(args,i)));
 }
 }
 unwind_protect_catch;
 a_free(v); /* Release v and cond before exiting function */
 a_free(cond);
 unwind_protect_end;
 return nil; /* This statement not executed in case of an error */
 }
}

10.2.2. Raising errors.

Every kind of error has an error number and an associated error message. There are predefined error numbers for
common errors defined in storage.h. To raise an ALisp error condition use the system function:

oidtype lerror(int no, oidtype form, bindtype env);

no is the error number.

form is the failed expression.

env is the binding environment for the error.

For example, the following code implements the Lisp function CAR:

oidtype carfn(bindtype env, oidtype x)

 69

{
 if(x==nil) return nil; // (CAR NIL) = NIL
 if(a_datatype(x) != LISTTYPE) return lerror(ARG_NOT_LIST,x,env);
 return hd(x);
}

A few convenience macros for common error checks are defined in storage.h:

OfType(x,tpe,env) Raise a standard error if x is not of type tpe.
IntoString(x,into,env) Dereference a symbol or string object x into a pointer to the C string in
 the image representing the object. Notice that the storage manager
 might invalidate this pointer as for other dereferences if the image
 moves.
IntoString0(x,into,env) Dereference a string object x into C string.
IntoInteger(x,into,env) Convert integer object x into C integer.
IntoDouble(x,into,env) Convert real object x into C double.

To register a new error to the system use:

int a_register_error(char *msg);

a_register_error gets a unique error number for the error string msg. If msg has been registered before its
previous error number is returned.

10.3. Calling Lisp from C

An ALisp function can be called from C by using the following C function:

oidtype call_lisp(oidtype lfn, bindtype env, int arity,
 oidtype a1, oidtype a2,...)

lfn is the ALisp functional expression to call.
env is the error binding environment.
arity is the actual arity of the call.
a1,a2,... are the actual arguments of the call.

For example, the following code implements an ALisp function (MYMAP L FN) which applies FN on each element
in L:

oidtype mymapfn(bindtype env, oidtype l, oidtype fn)
{
 oidtype res = nil, lst=nil;

 {unwind_protect_begin;
 a_setf(lst,l);
 while(listp(lst))
 {
 a_setf(res,call_lisp(fn,env,1,hd(lst)));
 a_setf(lst,tl(lst));
 }
 unwind_protect_catch;
 a_free(res);
 a_free(lst);

 70

 unwind_protect_end;
 }
 return nil;
}

Notice that unwind protection has to be used here to guarantee that the temporary memory locations are always
released even if the call to fn causes an ALisp error.

Also notice that the called ALisp function might allocate new data objects and these have to be freed correctly.

Symbols are convenient for calling named ALisp functions from C. For example, the following function prints each
element in a list:

oidtype mapprintfn(bindtype env, oidtype l)
{
 oidtype printsymbol = mksymbol("print"), lst = nil;

 a_setf(lst,l);
 while(listp(lst))
 {
 call_lisp(printsymbol,env,1,hd(lst));
 a_setf(lst,tl(lst));
 }
 return nil;
}

Notice that symbols like PRINT are permanent and when a symbol is referenced from a location (here
printsymbol) it need not be reference counted. Also the call to PRINT is here guaranteed to not generate any
new objects and need not be released.

To call Lisp functions with variable arity use:

oidtype apply_lisp(oidtype fn, bindtype env, int arity, oidtype args[]);

The difference to call_lisp is that the arguments are passed in the array args. Don’t forget to release the result.

To evaluate a C string of Lisp forms use:

oidtype eval_forms(bindtype env, char *forms);

All forms in forms are evaluated. The value of the last evaluation is returned as value. Don’t forget to release the
result.

10.3.1. Direct C calls

If the name of a C function implementing an ALisp function is known, it is more efficient to directly call the C
function. However, arguments and results of direct C calls must be handled carefully to avoid storage leaks or
system crashes. The automatic deallocation of temporary storage is NOT performed with direct C function calls. For
example, the following correctly defined external Lisp function prints ‘hello world’ by directly calling the ALisp
function PRINT:

oidtype hellofn(bindtype env)

 71

{
 oidtype msg = nil;

 a_setf(msg, mkstring(“hello world”));
 printfn(env, msg, nil); // PRINT has two arguments
 a_free(msg);
 return nil;
}

 By contrast, the following incorrect implementation would cause a storage leak because the ‘hello world’ string is
not deallocated:

oidtype hellofn(bindtype env)
{
 printfn(env, mkstring(“Hello world”), nil);
 return nil;
}

Notice that call_lisp automatically garbage collects its arguments upon return; thus temporary objects among
the arguments are automatically freed. For example, the following definition of myhello would be correct but slower
than the previous definitions:

oidtype hellofn(bindtype env)
{
 call_lisp(mksymbol(“print”),2,env, mkstring(“Hello world”), nil);
 return nil;
}

10.4. C functions for debugging

The reference counter of a physical storage object referenced by a handle is obtained with:

int refcnt(oidtype x)

Any ALisp object can be printed on the standard output with:

oidtype a_print(oidtype x);

When defining new physical storage type it is important to make sure that object allocation and deallocation works
OK. Therefore there is a hook to the Amos II and Alisp top loops to trace how many objects are allocated, or
deallocated, respectively. Turn on that hook by evaluating the form

(STORAGESTAT T)

The system will then make a report of how many objects have been (de)allocated for each physical storage type.
Make sure that the same number of objects is deallocated as allocated if that is expected. Notice that object
references might be saved in the database log and therefore you should rollback database updates when necessary to
get the balance between allocated and deallocated objects.

Turn off storage usage tracing with:

(STORAGESTAT NIL)

 72

In C memory leaks can be traced also by calling the system function:

void a_printstat(void)

It prints a report on how much storage was allocated since the previous time it was called.

Trapping memory corruption

When adding C-code to the system it is too easy to created corrupted database images. If not all the conventions for
writing C-code is not followed by all modules errors typically occur in a completely different place of the system.
When the system finds a corrupted memory location in the image it will print an error message:

Memory corruption in location 134000 (= 12345)

The two numbers 134000 and 12345 indicate that memory location denoted by handle (oidtype) 134000 is corrupt
and points to a word containing the integer 12345. To trap this when it actually happens can be done by calling the
function

 a_setdemon(oidtype loc, int val)

for example

 a_set_demon(134000, 12345);

It causes the ALisp interpreter to continuously check if loc is equal to val. Whenever loc becomes equal to val the
demon is turned off and an error is raised. See also Section 7.5.

10.5. Interrupt handling

The interrupt handling system is managed by the ALisp function (CATCHINTERRUPT). This function is called
whenever an interrupt has occurred. It either prints a message or catches the interrupt. The following C macro
checks if an error has occurred and calls CATCHINTERRUPT if that is the case:

CheckInterrupt;

 An interrupt is indicated when the global C variable InterruptHasOccurred is set to TRUE.
CheckInterrupt is called by the ALisp interpreter after every function call. If you write long-running C code
you should insert calls to CheckInterrupt to allow interrupts to be managed.

References

1 Guy L.Steele Jr.: Common LISP, the language, Digital Press,
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

2 Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore Risch, and Martin Sköld:
Amos II Release 7.x User’s Manual,
http://www.it.uu.se/~udbl/amos/doc/amos_users_guide.html

 73

Index
- 15
!ARGS... 46
!VALUE.. 45
* 16
BACKTRACE-DEPTH. 44
/ 16
:ERRCOND .. 41
:osql... 5
BATCH... 49
DEEP-PRINT.. 35
ERROR-CONDITION.......................... 41
EXCLUDE-PROFILE 48
PROFILER-FREQUENCY 48
+ 15
< 17
<= .. 17
= 17
> 17
>= .. 17
1- 16
1--.. 16
1+ .. 16
1++ .. 16
a_datatype ... 56
a_definetype.. 59
a_free... 56
a_let... 57
a_print ... 59, 71
a_printstat.. 72
a_register_error ... 69
a_return ... 64
a_setf ... 56
a_stacksize .. 32
absolute time values.................................. 33
ACCEPT-SOCKET 38
accessor functions 31
ACOS.. 16
ADDPROP.. 10
ADJOIN .. 11
Adjustable arrays 17
ADJUST-ARRAY 18
ADVISE-AROUND 31
AFTER-ROLLIN-FORMS....................... 32
AMOS-NAMESERVERHOST 40
AmosQL mode.. 5

analyze code.. 51
AND.. 17
ANDIFY ... 11
APPEND... 11
APPEND2... 11
APPLY.. 23
apply function from C............................... 70
apply_lisp.. 70
APPLYARRAY.. 23
APROPOS... 52
arc cosine .. 16
arc sine .. 16
arc tangent... 16
AREF .. 18
arguments of broken function 46
array element.. 17
array dimensionality.................................. 17
ARRAYP .. 18
ARRAYTOLIST....................................... 18
ARRAY-TOTAL-SIZE 18
ASIN ... 16
aspect-oriented programming 31
ASSOC.. 11
association list... 11
ASSQ .. 11
ATAN ... 16
atom... 12
ATOM... 11
ATTACH .. 14
backquote .. 28
backtrace ... 43, 44
BACKTRACE .. 49
batch mode .. 43
binary tree ... 11
binding environment 63
BOUNDP .. 9
BQUOTE .. 29
BREAK... 45, 46, 49
break commands 44
break loop.................................. 5, 32, 43, 46
break point .. 43, 45
break point on external Lisp function 46
break point on function 45
break point on macro 46
broken function 43, 44, 46

 74

B-trees ... 20
BUILDL.. 11
BUILDN ... 11
BUTLAST... 11
CAAAR... 11
CAADR... 11
CAAR ... 11
CADAR... 11
CADDR... 11
CADR ... 11
call with variable arity 22
call_lisp ... 69
CALLING... 53
calling C from Lisp 62
calling Lisp from C 69
CALLS.. 53
CAR .. 11
CASE .. 26
CATCH... 27, 28
CATCHDEMON 42
catcher ... 27
CATCH-ERROR 41, 42
CATCHINTERRUPT............................... 42
CDAAR... 11
CDADR... 11
CDAR ... 11
CDDAR... 11
CDDDDR.. 11
CDDDR... 12
CDDR ... 12
CDR .. 11, 12
ceiling.. 16
CEILING... 16
CHECKEQUAL 31
circular list .. 14
cleanup form ... 41
CLEAR-FUNCTION-PROFILES 49
CLOCK... 33
close stream... 35
CLOSE-SOCKET..................................... 39
CLOSESTREAM................................ 35, 38
closure ... 22, 23
CLRHASH.. 19
code pattern... 53
code search.. 51, 53
code verification.. 53

CommonLisp tutorial 5
COMPARE ... 17
CONCAT .. 15
CONCATVECTOR 18
COND ... 25, 26
conditional break points............................ 46
conditional tracing 47
connection ... 38
CONS.. 12
CONSP.. 12
control structures................................. 21, 28
copy with APPEND 11
COPY-ARRAY... 18
COPY-TREE... 12
COS... 16
cosine .. 16
cross referencing functions, CALLING.... 53
cross referencing functions, CALLS......... 53
cross-referencing....................................... 51
CTRL-C 33, 38, 39, 40, 42
database image 4, 5, 54
database image size................................... 31
datatype ... 6, 32
datatype ADJARRAY......................... 17, 55
datatype ARRAY................................ 17, 55
datatype BINARY..................................... 55
datatype BTREE 20
datatype CLOSURE............................ 22, 55
datatype DATE ... 35
datatype EXTFN 55
datatype HASHTAB 19, 55
datatype INTEGER............................. 15, 55
datatype LIST...................................... 11, 55
datatype REAL.................................... 15, 55
datatype SOCKET 35
datatype STREAM........................ 35, 36, 55
datatype STRING................................ 14, 55
datatype SYMBOL 6, 55
datatype TEXTSTREAM.............. 35, 37, 55
datatype TIME .. 34
datatype TIMEVAL.................................. 34
date values... 35
DATE-DAY.. 35
DATE-MONTH.. 35
DATEP.. 35
DATE-TO-TIMEVAL.............................. 34

 75

DATE-YEAR.. 35
debug mode............................. 40, 42, 43, 53
DEBUGGING..................................... 43, 49
debugging C.. 71
debugging macros 29
DECLARE .. 31
DEFC .. 7, 8
DEFGLOBAL... 8, 9
DEFMACRO .. 7, 30
DEFSTRUCT.. 30
DEFUN ... 6, 7
DEFVAR... 8, 9
DELETE ... 14
DELETE-FILE.. 37
dereferencing objects 55
destructive CONS 14
destructive list concatenation.................... 14
destructive list element removal 14
destructive list manipulation 13
destructive list merge 14
destructive reverse 14
destructor... 60
direct C call ... 70
DMERGE.. 14
DO... 27
DO*... 27
DOC .. 53
documentation..................................... 51, 52
DOLIST .. 27
DOTIMES... 27
double precision .. 15
DOUNITERRUPTED............................... 42
dr, dereferencing objects........................... 56
DUMPSTACK.................................... 44, 49
dynamic argument list............................... 22
dynamic expressions 23
dynamic scoping ... 8
EIGHT... 12
ELT ... 18
Emacs.. 51
envarity ... 65
environment variable RELEASING 51
EQ ... 17
EQUAL... 17
ERRCOND-ARG................................ 41, 42
ERRCOND-MSG 41, 42

ERRCOND-NUMBER....................... 41, 42
ERROR ... 41, 42
error condition..................................... 41, 68
error message 41, 68
error number.. 41, 68
error signal .. 41
ERROR? ... 41, 42
escape character 14, 36
EVAL.. 23
eval_forms... 70
EVALLOOP ... 31
evaluate C forms 70
EVENP.. 17
EVERY ... 25
exfunction ... 64
EXIT ... 31
EXP... 16
explicit break point 45
EXPLODE .. 10
exponent.. 16
EXPT... 16
external function registration 63, 64
external Lisp function 7, 62
EXTFNP ... 7
extfunction .. 64
F/L... 23
false ... 6, 16
FAULTEVAL..................................... 41, 42
FIFTH ... 12
file position 44, 51, 53
file streams .. 35, 36
FILE-EXISTS-P.. 37
FILE-LENGTH... 37
finding functions 51
finding source code 51
FIRST.. 12
FIRSTN... 12
FLET... 7
floating point numbers 15
FLOOR ... 16
FLUSH.. 35, 39
focused frame.. 44
focused function.. 44
FORMAT.. 36
FORMATL ... 36
FOURTH... 12

 76

FP .. 51, 53
FRAMENO... 42
free variables... 21
FUNCALL .. 21, 23
FUNCTION .. 21, 23
function cell .. 6
function definition....................................... 6
function statistics 49
function type ... 7
functional arguments................................. 21
functions.. 70
functions excluded from sampling............ 48
garbage collection 4, 10, 50, 54, 65, 71
GENSYM.. 10
GET... 10
GET-BTREE... 20
GETD.. 7
GETF... 12
GETHASH.. 19
GETHOSTNAME..................................... 38
GETTIMEOFDAY 34
global value... 6, 59
global variable... 9
GO... 9
GREP .. 53
handle assignment..................................... 56
handle initialization................................... 57
handle release.. 56
handles .. 54
HARDRESET..................................... 41, 42
hash table keys .. 19
HASH-BUCKET-FIRSTVAL.................. 19
HASH-BUCKETS 20
HASH-TABLE-COUNT 20
HELP... 45, 50
higher order functions 21
hooks ... 32
ID .. 31
IF 26
image expansion............................ 32, 50, 56
IMAGE-EXPANSION 50
IMAGESIZE... 31
IN .. 12
indicator .. 11
INT-CHAR ... 15
INTEGERP ... 16

INTERSECTION...................................... 12
INTERSECTIONL 12
IntoInteger... 64
ISOME .. 24
iteration ... 23
keyword... 10
KEYWORDP.. 10
KEYWORD-TO-ATOM 10
KWOTE .. 30
KWOTED ... 30
LAMBDA ... 6
lambda expression............................... 21, 24
LAMBDA function..................................... 6
LAMBDAP... 7
LAST... 12
LDIFF ... 12
LENGTH... 12
lerror.. 68
LET ... 8, 9
LET* ... 9
lexical environment................................... 45
Lisp function defined in C 7
Lisp macro .. 7
list.. 11
LIST .. 12
LIST* .. 12
LISTP.. 12
LISTTOARRAY....................................... 18
LOAD ... 37
LOC... 50
local variables ... 8, 9
LOCATEPOS ... 12
LOG .. 16
logical objects ... 55
LOOP .. 27
lower case.. 15
macro... 7, 30
macro expansion 29, 30
MACROEXPAND.................................... 30
MACRO-FUNCTION 30
macros ... 28
MAKE_ARRAY....................................... 18
MAKE_BTREE .. 20
MAKE-ARRAY 17, 18
MAKE-BTREE... 20
MAKE-HASH-TABLE 19, 20

 77

MAKETEXTSTREAM 37
malloc.. 54
map function ... 23
MAP-BTREE.. 21
MAPC ... 24
MAPCAN ... 24
MAPCAR.. 23, 24
MAPFILTER .. 24
MAPHASH... 19, 20
MAPL ... 25
MATCHING... 53
MAX ... 16
MEMBER ... 12
memory corruption.............................. 50, 72
MEMQ .. 12
MERGE... 12
MIN... 16
MINUS.. 16
MKDATE ... 35
MKLIST.. 12
MKSTRING.. 6, 15
mksymbol.. 59
MKSYMBOL ... 10
MKTIME .. 34
MKTIMEVAL .. 34
MOD ... 16
MOVD .. 8
Move down the stack 45
name server ... 39
NATOM.. 12
natural logarithm....................................... 16
NCONC... 14
NCONC1... 14
NEQ .. 17
nick names .. 40
NIL.. 6, 16
nil, C handle .. 54, 59
NINTH .. 12
NOBIND... 10
non-blocking messages 40
non-local returns 27
NOT .. 17
NOTANY.. 25
NREVERSE.. 14
NTH .. 12
nthargval ... 65

NTHCDR .. 12
NULL.. 12, 17
NUMBERP ... 16
numeric values .. 15
objtags ... 55
ODDP.. 17
OfType .. 64
oidtype, declaring handle 54
open stream ... 35
OPEN-SOCKET 38, 39
OPENSTREAM.................................. 36, 37
OR... 17
PACK.. 10
PACKLIST ... 10
PAIR ... 13
PAIRLIS ... 13
parameters ... 45
peer.. 39
pending data .. 39
percentage spent in function 48
performance profiling 47
persistent data.. 54
physical objects................................... 54, 55
point-to-point communication 38
POLL-SOCKET.. 39
POP ... 13
PP .. 37, 52
PPF.. 37
PPS.. 36
pretty-print .. 29, 36
Pretty-print .. 37
PRIN1 ... 36
PRINC... 36
PRINT... 35, 36, 38
print function... 60
print name ... 6, 59
PRINTFRAME ... 50
PRINT-FUNCTION-PROFILES........ 49, 50
PRINTL... 37
PRINTSTAT... 50
PROFILE .. 48, 50
PROFILE-FUNCTIONS..................... 48, 50
PROG.. 9
PROG1.. 25
PROG2.. 25
PROG-LET ... 9

 78

PROG-LET* ... 10
PROGN... 25, 26
PROGNIFY... 30
property indicator...................................... 10
property list 6, 7, 10, 11, 12
property value ... 10
PUSH .. 13
PUSH-VECTOR....................................... 18
PUT... 10
PUT-BTREE... 21
PUTF... 13
PUTHASH .. 20
QUIT... 32
QUOTE................................... 10, 21, 23, 66
raising error... 41
RANDOM... 16
READ.. 35, 36, 38
READ-CHARCODE 36
RECONS... 13
recursive functions 23
REDIRECT-BASIC-STDOUTPUT 36
REFCNT ... 50
reference counter........................... 50, 55, 71
REGISTER-AMOS................................... 40
REGISTER-INIT-FORM 32
REGISTER-SHUTDOWN-FORM........... 33
regression testing 31
regular expression 15
relative time values 33, 34
REMHASH... 20
remote evaluation................................ 38, 39
REMOTE-EVAL 40
REMOVE.. 13
remove break point 46
REMPROP.. 11
RESET .. 41, 42
reset Lisp....................................... 41, 44, 46
reset point.. 41
RESETVAR.. 10
REST... 13
RETURN... 27
REVERSE... 13
rewrite rule .. 28
rewrite rules .. 7
ROLLOUT................................ 5, 32, 33, 54
ROUND .. 16

RPLACA... 14
RPLACD... 14
RPTQ .. 27
RUN-SERVER ... 40
samples.. 48
sampling frequency................................... 48
scope ... 44
search code.. 51
SECOND... 13
SELECTQ... 27
SEND-FORM ... 40
sequences .. 17
SET ... 10
SETA... 18
SETDEMON....................................... 50, 72
SET-DIFFERENCE.................................. 13
SETF 14, 19, 20, 31, 32
SETFMETHOD .. 32
SETQ... 8, 10
SET-TIMER.. 33
SEVENTH .. 13
side effects .. 29
SIN .. 16
sinus .. 16
SIXTH... 13
SLEEP... 33
SMASH... 14
socket stream... 35
SOCKET-PORT 38
sockets... 38
SOME ... 25
SORT .. 13
sorting lists .. 13
source code.. 51, 52
SPACES.. 36
special forms ... 7, 66
special variable.. 8, 9
SPECIAL-VARIABLE-P 10
SQRT .. 16
stack overflow..................................... 32, 42
STACKSIZE... 32
standard error .. 60
standard input................................ 35, 36, 60
standard output.............................. 35, 36, 60
START-PROFILE 47, 50
statistical profiler 47

 79

STOP-PROFILE 48, 50
storage leaks.. 50, 71
storage manager 35, 54, 67
storage types.. 59
storage usage... 50
storage.h .. 54
STORAGESTAT 50, 71
STORAGE-USED 50
streams .. 35
string delimiter .. 36
STRING<.. 15
STRING=.. 15
STRING-DOWNCASE 15
STRING-LIKE.. 15
STRINGP.. 15
STRING-UPCASE 15
structures ... 30
SUBLIS... 13
SUBPAIR.. 13
SUBSET.. 25
SUBSETP ... 13
SUBST .. 13
surrogate objects 55
SWAP ... 18
SYMBOL-FUNCTION 6, 8
SYMBOLP.. 11
SYMBOL-PLIST...................................... 11
symbols ... 6
SYMBOL-SETFUNCTION 7, 8
SYMBOL-VALUE................................... 10
syntactic sugar... 28
t, C handle ... 59
T, global Lisp variable 16
T<.. 34
T<=.. 34
T>.. 34
T>=.. 34
TAN .. 16
tangent... 16
TCP/IP... 38
TENTH ... 13
TERPRI... 36
text streams ... 37
TEXTSTREAMPOS................................. 37
TEXTSTREAMSTRING.......................... 38
THIRD .. 13

THROW.. 27, 28, 41
time functions.. 33
time points... 34
TIME-HOUR .. 34
TIME-MINUTE.. 34
TIMEP... 34
TIMER .. 50
timer function.. 33
TIME-SECOND 34
TIMEVALP .. 34
TIMEVAL-SEC.. 34
TIMEVAL-TO-DATE.............................. 34
TIMEVAL-USEC..................................... 34
TRACE ... 46, 50
TRACEALL.. 50
transform Lisp programs........................... 28
transient data ... 54
TRAPDEALLOC...................................... 50
true .. 6, 16
truth value ... 6
type identifier 54, 55
type name.. 6, 55
type reader... 37
type table... 59
type tag.. 6
TYPENAME... 6, 32
TYPE-READER 37
UNBREAK ... 46, 50
undeclared global variables......................... 8
undefined functions................................... 53
undefined variables 53
UNFUNCTION... 30
UNION.. 13
UNIONL ... 13
UNIQUE ... 13
UNLESS ... 27
UNPROFILE-FUNCTIONS............... 49, 50
UNTRACE.. 47
unwind protection in C........................ 67, 70
UNWIND-PROTECT................... 28, 41, 43
upper case.. 15
USING .. 53
VAG.. 51
value of handle.. 54
variable.. 8
variable arity ... 22

 80

variable arity external Lisp functions ... 7, 65
variable number of arguments 7, 65
VECTOR... 18
VERIFY-ALL... 53
VIRGINFN ... 51
WHEN... 27

WHILE.. 27
WITH-INPUT-FILE 37
WITH-OUTPUT-FILE 37
wrapping profiler 47, 48
XEmacs ... 51

