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Exercise 7: Query optimization in AMOS2 (PC lab)

When an AMOSQL query is entered to AMOS2 there are several alternatives to find the

cheapest query plan for executing the query:

• Heuristics. The search space is limited using heuristic rules [3].

• Random optimization. The optimizer chooses randomly different points in the search

space and uses an extended version of 'Hill climbing' to explore the surrounding points

[1][4].

• Exhaustive search [6]. The complete search space is searched. Guarantees the cheapest

query plan (if the cost model is correct).

In this exercise, you will use the internal LISP in AMOS2, callsed ALisp [5], to write an

exhaustive query optimizer, using the “dynamic programming” algorithm.

7.1 Goals

This exercise has the goal to give an understanding of the query optimizer in AMOS2. The

purpose of this exercise is to give insight to how an exhaustive search can be implemented effec-

tively, and how to different parameters, cost and fanout can be used to rank different query

plans.

7.2 Time

Six hours of scheduled lab time (excluding home preparations) have been allocated for this

exercise. (Note that this lab is done on PC and not on the Sun system!)

7.3 The actual exercise

Read the rest of this description. Download AMOS2 as in Exercise 6. In the file ~dbtek/kursbib-
liotek/amos/kodskelett.lsp there is a code skeleton for the LISP function dynprogsort. It is

the function that should perform exhaustive search (it is optional to use the skeleton). Below follows a

description of query optimization in AMOS2, of the algorithm you should use, and some usable LISP

functions.

Create a copy of the code skeleton from:

~dbtek/kursbibliotek/amos/kodskelett.lsp

Save it in a file, e.g. lab7.lsp, edit your changes, and load it into AMOS2 (see below).

As example database you should use the soccer database from Exercise 6.

Create the World Cup database in the file wc.dmp and start AMOS2 with it by:

amos2 wc.dmp

As default AMOS2 uses a 'greedy' heuristic for query optimization. To change to exhaustive search do
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the AMOSQL command:

optmethod(‘exhaustive’);

When you have given the above command the regular query optimizer will call dynprogsort. Don't

forget this before testing!! The exhaustive optimization is not supported in the version of AMOS2 you

are running and it is the task of this exercise to implement it.

Another important issue is, to make your task simple, you should assume that the pre-optimized query

predicates are always transformed to disjunctive normal form (DNF). You must instruct the optimizer to

transform the predicates to DNF by evaluation the following Lisp expression before running your pro-

gram:

(setq _use_dnf_ t)

Hand in all your code to the lab assistant along with examples of optimized queries (from Exercise 6).

Also give a search path so the assistant can test your algorithm.

Query optimization in AMOS2

The internal representation of query plans in AMOS2 is based on the logical language ObjectLog [3].

ObjectLog can be seen as an object-oriented variation of Datalog. Datalog [7] is a subset of Prolog

developed for relational databases. Predicates in Datalog cannot have function symbols (functors) as

arguments.

In fig. 1 a simplified description is given of the steps involved in query optimization in AMOS2:

Consider the following AMOSQL query:

What matches in 1950 had more than 100000 spectators?

select m
from match m
where spectators(m)>100000

and year(played_in(m))=1950;

This query will be translated to an unoptimized ObjectLog program similar to this:

AMOSQL Query

ObjectLog Interpreter

ObjectLog Optimizer

ObjectLog Program

ObjectLog Generator

Optimized ObjectLog Program

Figure 1: Query processing in AMOS2
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answer(M) <- spectatorsmatch->integer(M,_V1) &

played_inmatch->tournament(M,_V2)

yeartournament->integer(_V2,1950) &

>(_V1,100000)

ObjectLog predicates are annotated with the signatures of the corresponding AMOSQL functions. They

are overloaded on the signatures, i.e. defining the same function for different types.

The optimized version of the above ObjectLog program looks like:

answerf(M) <- yearfbtournament->integer(_V2,1950) &

played_infbmatch->tournament(M,_V2) &

spectatorsbfmatch->integer(M,_V1) &

>bb(_V1,100000)

Optimized ObjectLog predicates are not only overloaded on the argument types, but also on binding

patterns. When the execution order of the ObjectLog predicates is decided it is also known which of the

arguments will be bound at the time of execution. The binding pattern 'fb' for the year predicate above

means that the first argument will be 'free' and the second will be 'bound'. The binding pattern 'bb' for

the '>' predicate means that both of the arguments will be 'bound' at the time of execution (the predicate

will thus function as a boolean test).

The interpreter executes the optimized ObjectLog program using the 'nested loop' method. I the above

program the interpreter would start with fetching the tournament (_V2) that was had in 1950, then

search for a match (M) that was played in that tournament. When such a match is found the interpreter

continues with fetching the number of spectators for that match and finally test if this number exceeds

100000. If it does then the match M will be returned as the answer to the query. AMOS2 then 'back-

tracks' and tries to find more matches that were played in the tournament _V2 and continues until all

tournaments (in 1950) with corresponding matches have been processed.

Internally ObjectLog predicates are represented as LISP lists. The body in the unoptimized ObjectLog

program above would be represented by the following list (l1):

(AND (P_MATCH.SPECTATORS->INTEGER M _V_NIL_1)
     (P_MATCH.PLAYED_IN->TOURNAMENT M _V_NIL_2)
     (P_TOURNAMENT.YEAR->INTEGER _V_NIL_2 1950)
     (OBJECT.OBJECT.>->BOOLEAN _V_NIL_1 100000)

The body in the optimized ObjectLog program above would be represented by the following list (l2):

(AND (P_TOURNAMENT.YEAR->INTEGER _V_NIL_2 1950)
     (P_MATCH.PLAYED_IN->TOURNAMENT M _V_NIL_2)
     (P_MATCH.SPECTATORS->INTEGER M _V_NIL_1)
     (CALL GT-- #[OID 91 OBJECT.OBJECT.>->BOOLEAN] _V_NIL_1 100000))

In this exercise you are to write the LISP function dynprogsort that takes an unoptimized list of

ObjectLog predicates and returns the permutation that equals the cheapest query plan1. Thus if the

list l1 is sent to the function it should return l2.

Physical storage

!
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Stored functions in AMOSQL have the relationship between the function arguments and the result

directly stored in the database.The relationship is stored internally as tables. For example, for the func-

tion year(tournament)->integer there exist a table P_tournament.year->integer with two attributes (of

the types tournament and integer) and 14 tuples (one for each tournament).

The cost model

The AMOS2 optimizer uses two types of estimated values for finding the cheapest query plan: (1) the

cost for executing a given predicate given a certain binding pattern and (2) the size of the result of an

execution (fanout). The cost is defined as 2 * the number of visited tuples. Fanout is the number of

tuples in the result.

Assuming there is no index on the year for the function year(tournament)->integer then the cost for

executing the predicate:

yeartournament->integer(_G2,1950)

with the binding pattern ’fb’ will be 2*14 = 28 since all the 14 tuples have to be scanned. Fanout will be

1 since the result relation contains one tuple (1950 the was one tournament organized).

Dynamic programming

Assume that an ObjectLog program consists of three predicates (subgoals):

answer(X) <- X & Y & Z

There are 6 different permutations of the predicates (XYZ, XZY, YXZ, YZX, ZXY and ZYX). A search

tree to find the cheapest permutation could look like the tree in figure 2.

Consider the query plan XYZ, i.e. the path from the root to the leaf furthest to the left in figure 2. The

cost for executing X first is estimated to 100 and the expected number of results (fanout) is 50. The cost

for executing Y afterwards is estimated to 200 and fanout is estimated to 1. Since the previous fanout

was 50 the total cost so far is 100+200*50=10100. Fanout after executing XY is 50*1=50. The cost for

finally executing Z is estimated to 8. The total cost for executing the query plan XYZ is thus

10100+8*50=10500.

1. ObjectLog programs are transformed to disjunctive normal form if the LISP variable _USE_DNF_ is set

to T. The task of the LISP-function dynprogsort is to optimize a conjunction of ObjectLog predi-

cates.
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As can be seen in figure 2 the cheapest query plan is YXZ (with an estimated cost of 700). The algo-

rithm that we shall use here is based on search downward in the branch that is currently the cheapest. If

we come to a leaf-node and there is no alternative (sub-) plan with a lower cost then we can stop the

search. Since the cost grows monotonically we are guaranteed to have found the cheapest query plan.

In the example above we start with estimating the cost and fanout for executing each of the three predi-

cates X, Y, or Z, first (figure 3a). The cheapest branch in the tree is X with a cost of 100, and then fol-

lows Y (cost 200) and Z (cost 800). We create a queue (X, Y, Z) with these incomplete query plans. The

X X

XX

X Y Z

Y Z Z Y

Z Y Z Y

TC=0
TF=1

C=100
F=50
TC=100
TF=50

C=200
F=100
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Figure 2: Search-tree for the example query
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Figure 3: Algorith for finding the cheapest query plan



- 79 -

Exercise 7: Query optimization in AMOS2 (PC lab)

queue must be kept sorted on the total cost all the time. The next step is to estimate the cost of every

continuation after X, i.e. XY and XZ (figure 3b). We put these plans in the queue and remove X: (Y, Z,

XY, XZ). The cheapest branch in the tree is now Y with a cost of 200. The cost for all possible continu-

ations after Y, i.e. YX and YZ are estimated (figure 3c). Y is now removed and the new plans are put in

the queue: (YX, Z, YZ, XY, XZ). The cheapest branch in the tree is now YX with a cost of 300. After

YX there is only one possibility, YXZ, and the cost for this plan is estimated (figure 3d). The cheapest

branch is now YXZ (with a cost of 700) since this is a leaf-node i the complete search tree (figure 2) the

search for the cheapest query plan is now finished.

ALisp

In AMOS2 there is a complete built-in LISP-interpreter called ALisp. The LISP-dialect is a large subset

of CommonLisp. ALisp can be started inside AMOS2 by the AMOSQL command:

lisp;

To get back to the AMOSQL-prompt one can give the following expression to the ALisp interpreter:

:osql

ALisp differs from CommonLisp in some ways. Ask the assistant if you run into problems.

Debugging

The easiest way to debug your LISP functions is to add trace printouts yourselves in the code (with

prin1, princ, print, ...). In ALisp there are also some debugging tools:

Break points can be put into LISP-functions with the macro:

(break fn1 fn2 ...)

For example:

(break dynprogsort)

The execution will be interrupted every time a ’broken’ function is started. The. ALisp will then enter

into a ’break-loop’ inside the following commands can be given:

?=

Prints the values of the actual arguments to the broken function.

:eval

Evaluates the body of the function and enters the ’break-loop’ again.

!value

Is a special variable that contains the value of the function that has just been evaluated with :eval. Can

only be accessed directly after :eval.

:c

Continues the execution, i.e. exist the break-loop.

:r

Resets the ALisp interpreter.

:ub

Removes the breakpoint from the current function.

Break points can be removed by:

(unbreak fn1 fn2 ...)

For example:

(unbreak dynprogsort)
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Traces of function calls can be printed out by:

(trace fn1 fn2 ...)

For example:

(trace dynprogsort)

Trace printouts can be cancelled by:

(untrace fn1 fn2 ...)

For example:

(untrace dynprogsort)

Useful ALisp-functions
(objlog query)
Prints out the internal representation of the ObjectLog program that the query is compiled to. First the

unoptimized program, and then the optimized. Don’t forget the semicolon (;) after the query.

For example:

(objlog “select m from match m where spectators(m)>100000 and
year(played_in(m))=1950;”)

(load file-name)

Loads and evaluates a file of LISP code (S-expressions).

For example:

(load ”lab7.lsp”)

(pp fn)

Prints (pretty prints) the definition of the LISP-function fn.

For example:

(pp dynprogsort)

(amosql query)

Executes the AMOSQL query.

For example:

(amosql “select m from match m where spectators(m)>100000 and
year(played_in(m))=1950;”)

(timer S-expression)

Executes S-expression and prints out used CPU-time.

For example:

(timer (amosql “...;”))

Various optimization functions

The following LISP functions can be very useful when you write the function dynprogsort.

(simple-pred-cost pred bpat)

Returns (lc . fo) where lc is the estimated cost and fo is the estimated fanout for executing the predicate

pred with the binding pattern bpat. Returns NIL if the predicate with that binding pattern is not possible

to execute.

For example:
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(setq pred (list (getfunctionnamed 'p_tournament.year->integer) '_v2 1950))
=> (#[OID 356 P_TOURNAMENT.YEAR->INTEGER] _V2 1950)
(simple-pred-cost pred '(+ -))
=> (50 . 1.78571)

(bindadornpat pred bound)

Returns the binding pattern for pred, i.e. a list with + (denoting a free variable) and - (denoting a bound

variable). If, for example, variable 2 and 4 (of 4) in pred are bound  the pattern ’(+ - + -) is returned.

For example:

(setq pred (list (getfunctionnamed 'p_tournament.year->integer) '_v2 '_v3))
=> (#[OID 356 P_TOURNAMENT.YEAR->INTEGER] _V2 _V3)
(bindadornpat pred '(_v3))
=> (+ -)

(substbindadorned pred bpat)

Chooses the correct function (predicate)pred for a particular binding patternbpat (found by binda-
dornpat).

For example:

(substbindadorned
(list(getfunctionnamed 'object.object.>->boolean)’_v1 10000)
‘(- -))

=> (CALL GT-- #[OID 91 OBJECT.OBJECT.>->BOOLEAN] _V1 10000)

(pred_binds pred vars)

Returns the union of vars and the variables in pred.

For example:

(setq pred (list (getfunctionnamed ’number.number.plus->number) 17 42 ’_v1))
=> ([#OID 75 NUMBER.NUMBER.PLUS->NUMBER] 17 42 _v1)
(pred_binds pred ’(X Y Z))
=> (_V1 X Y Z)

PLANINFO-structures
(defstruct planinfo plan bound rem cost fanout)

Can be used for storing information about (incomplete) execution plans. Contains the fields:

plan The (incomplete) plan that has been built so far

bound The variables that are bound when PLAN has been executed

rem The predicates that remain to order (the predicates that are not yet in PLAN)

cost The cost for executing PLAN

fanout The fanout when PLAN has been executed

The function print-planinfo is useful when debugging:

(defun print-planinfo (p)
XX(formatl t
XXXXXXXXXXX” plan:” (planinfo-plan p) t
XXXXXXXXXXX” bound:” (planinfo-bound p) t
XXXXXXXXXXX” rem:” (planinfo-rem p) t
XXXXXXXXXXX” cost:” (planinfo-cost p) t
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XXXXXXXXXXX” fanout:” (planinfo-fanout p) t))

Storage structure for the queue of PLANINFO-structures

In a real implementation it is important that searches and updates of a queue are very efficient. Because

of this some efficient storage structure should be used such as an indexed tree. In this exercise it is OK

to use ordinary LISP-lists to represent a queue. Talk to the lab assistant if you want to use some more

efficient data structure that already exist in AMOS2.
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