

 1

 ALisp v2 User’s Guide

Tore Risch

Uppsala Database Laboratory

Department of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

2006-02-22 (revised 2011-12-02)

ALisp is an interpreter for a subset of CommonLisp built on top of the storage manager of the Amos II database system. The

storage manager in scalable end extensible, which allows data structures to grow very large gracefully and dynamically without

performance degradation. Its garbage collector is incremental and based on reference counting techniques. This means that the

system never needs to stop for storage reorganization and makes the behaviour of ALisp very predictable. ALisp is written in

ANSII C and is tightly connected with C. Thus Lisp data structures can be shared and exchanged with C programs without data

copying and there are primitives to call C functions from ALisp and vice versa. The storage manager is extensible so that new

data structures shared between C and Lisp can be introduced to the system. ALisp runs under Windows and Linux. It is delivered

as an executable and a C library which makes it easy to embed ALisp in other systems.

This report documents how to use the ALisp system.

 2

Table of contents

1. Introduction ... 4

2. Starting ALisp ... 4
3. Basic Primitives .. 5

3.1. Data types.. 6
3.2. Symbols... 6

3.2.1. Defining functions .. 7

3.2.2. Binding variables .. 8
3.2.3. Symbol manipulation .. 10

3.3. Lists ... 11
3.3.1. Destructive list functions .. 13

3.4. Strings ... 15

3.5. Numbers .. 16

3.6. Logical Functions.. 17
3.7. Arrays .. 18

3.8. Hash Tables ... 19
3.9. Main memory B-trees ... 20
3.10. Functional arguments and dynamic forms .. 21

3.10.1. Closures... 22
3.10.2. Applying functions with variable arity ... 22
3.10.3. Dynamic evaluation .. 23

3.10.4. System functions for run-time evaluation ... 23
3.11. Map functions ... 24

3.12. Control Structures ... 25

3.12.1. Compound expressions ... 26

3.12.2. Conditional expressions .. 26
3.12.3. Iterative statements ... 27

3.12.4. Non-local returns .. 28
3.13. Macros... 28
3.14. Defining structures .. 31

3.15. Miscellaneous functions.. 32
3.16. Hooks .. 33

4. Time Functions ... 34
4.1. System clock ... 34
4.2. Absolute Time Values... 35
4.3. Relative time values .. 35
4.4. Relative Date Values... 35

5. Input and Output ... 36
5.1. File I/O .. 38

5.2. Text streams .. 39
5.3. Sockets .. 39

5.3.1. Point to point communication ... 40
5.3.2. Remote evaluation .. 41

6. Error handling ... 42
6.1. Trapping exceptions .. 42

 3

6.2. Raising errors .. 43

6.3. User interrupts ... 43
6.4. Error management functions ... 44

7. Lisp Debugging ... 44

7.1. The break loop .. 45
7.2. Breaking functions .. 46

7.2.1. Conditional break points ... 47
7.3. Tracing functions .. 48
7.4. Profiling .. 48

7.4.1. The Statistical Profiler .. 49
7.4.2. The Wrapping Profiler .. 50

7.5. System functions for debugging ... 50
8. Code search and analysis .. 52

8.1. Emacs subsystem .. 52
8.2. Finding source code .. 53

8.3. Code verification ... 54

 4

1. Introduction

ALisp is a small but scalable Lisp interpreter that has been developed with the aim of being embedded in other

systems. It is therefore tightly interfaced with ANSII C and can share data structures and code with C. ALisp

supports a subset of CommonLisp and conforms to the CommonLisp standard when possible. However, it is not a

full CommonLisp implementation, but rather such constructs are not implemented that are felt not being critical and

difficult to implement efficiently. These restrictions make ALisp relatively small and light-weight, which is

important when embedding it in other systems.

ALisp was designed to be embedded in the Amos II object-relational database kernel [3]. However, ALisp is a

general system and can be used as a stand-alone system as well. This manual documents the stand-alone ALisp

system with a few exceptions. Because it is used in a database kernel it is very important that its storage manager is

efficient and scales well. Thus all data structures are dynamic and can grow without performance degradation. The

data structures grow gracefully so that there are never any significant delays for data reorganization, garbage

collection, or data copying. (Except that the OS might sometimes do this, outside the control of ALisp). There are

no limitations on how large the data area can grow, except OS address space limitations and the size of the virtual

memory backing file. The performance is of course dependent on the size of the available main memory and

thrashing may occur when the amount of memory used by ALisp is larger than the main memory.

A critical component in a Lisp system is its garbage collector. Lisp programs often generate large amounts of

temporary data areas that need to be reclaimed by garbage collection. Furthermore, as ALisp was designed to be

used in a DBMS kernel it is essential that the garbage collection is predictable, i.e. it is not acceptable if the system

would stop for garbage collection now and then. The garbage collector must therefore be incremental and

continuously reclaim freed storage. Another requirement for ALisp is that it can share data structures with C, in

order to be tightly embedded in other systems. Therefore, unlike many other implementations of Lisp (SmallTalk,

Java, etc.) systems, both C and Lisp data structures are allocated in the same memory area and there is no need for

expensive copying of large data areas between C and Lisp. This is essential for a predictable interface between C

and Lisp, in particular if it is going to be used for managing large database objects as in ALisp’s main application.

Section 2 describes the system functions in ALisp. The differences w.r.t. CommonLisp are documented. Section 3

gives an overview of the debugging facilities, while Section 4 describes the error handling mechanisms. Section 5

describes the I/O system. The storage manage and how to extend ALisp with new datatypes and functions

implemented in list is described in separate document [2].

ALisp includes a code search system to allow for searching for Lisp code having certain properties (Sec. 8). The

code search system is connected to Emacs (and XEmacs) to allow for finding Lisp source code. A code validation

system (Sec. 8) searches through Lisp code to find possible errors such as unbound variable, undefined functions, or

other questionable Lisp code.

2. Starting ALisp

ALisp is a subsystem of Amos II [1]. Amos II is started with the OS command:

 amos2

The same directory as where Amos II is started must have a database image file with a system Amos II database:

 amos2.dmp

When Amos II is started it runs the AmosQL top loop where it accepts and evaluates AmosQL commands from the console.

 5

To enter the ALisp top loop where Lisp expressions are evaluated rather than AmosQL, give the AmosQL command:

 lisp;

To go back to AmosQL top loop from the ALisp top loop, enter the keyword:

 :osql

When in the ALisp top loop the system reads S-expressions, evaluates them, and prints the results from the evaluation, for

example:

> (setq a '(a b c))

WARNING! Setting undeclared global variable: A

(A B C)

> (reverse a)

(C B A)

> (defun foo (x)(+ 1 a))

Undeclared free variable A in FOO

FOO

>

As you can see, ALisp warns the user when it encounters forms that may contain errors. If you make an error ALisp will enter a

break loop where the error can be investigated. The simplest thing to do is to enter :r to reset the error. For example:

> your-age

Error 1, Unbound variable: YOUR-AGE

When evaluating: YOUR-AGE

(FAUTEVAL BROKEN)

In *BOTTOM* brk>:r

>

See Sec. 7.1 for documentation of all break loop commands.

The recommended way to learn about ALisp is to run a CommonLisp tutorial, e.g. http://mypage.iu.edu/~colallen/lp/. Notice that

ALisp is a subset of CommonLisp so not all exercises there are applicable, in particular CommonLisp FORMAT function is

replaced with a simplified FORMATL (Sec. 5) and arrays (Sec. 3.7) are one-dimensional.

All Lisp code and data is stored inside the database image which is a dynamic main memory area. The image can be saved on

disk with the ALisp function:

 (rollout filename)

which is equivalent to the AmosQL command:

 save "filename.dmp";

To later connect Amos II to a previously saved image, issue the OS command:

 amos2 filename.dmp

3. Basic Primitives

This section describes the basic Lisp data types and the functions operating over them.

http://mypage.iu.edu/~colallen/lp/

 6

The CommonLisp standard functions are defined in [1]. Significant differences between an ALisp function and the corresponding

CommonLisp function are described in the function descriptions in this document.

3.1. Data types

Every object in ALisp belongs to exactly one data type. There is a system provided type tag stored with each object that identifies

its data type. Each data type has an associated type name as a symbol. The symbolic name of the data type of an ALisp object O

can be accessed with the ALisp function:

(TYPENAME O)

ALisp provides a set of built-in basic data types. However, through its C-interface ALisp can be in addition extended with new

datatypes implemented in C. The system tightly interoperates with C so that i) data structures can be shared between C and ALisp

(Sec. 8), ii) the ALisp garbage collector is available in C (Sec. 8), iii) ALisp can call functions implemented in C as documented

in [2], iv) ALisp functions can be called from C, and v) C can utilize ALisp’s error management.

3.2. Symbols

A symbol (data type name SYMBOL) is a unique text string with which various system data can be associated. Symbols are used

for representing functions, macros, variables and property lists. Functions and macros represent executable ALisp code, variables

bind symbols to values, and property lists associate data values with properties of symbols. Symbols are unique and the system

maintains a hash table of all symbols. Symbols are not garbage collected and their locations in the dataase image never change. It

is therefore not advisable to make programs that generate unlimited amounts of symbols. Symbols are mainly used for storing

system data (such as programs) while other data structures, e.g. hash tables, arrays, lists, etc. are used for storing user data.

Symbols are always internally represented in upper case and symbols entered in lower case are always internally capitalized by

the system.

The special system symbol NIL represents both the empty list and the truth value false. All other values are regarded as having

the truth value true.

Each symbol has the following associated data:

The print name is a string representing the symbol. The print name of a symbol can be accessed by the function MKSTRING. For

example:

 > (mkstring 'banana)

 "BANANA"

1. Symbols represent variables and bind them to values. The global value of a symbol (Sec. 3.2.1) binds it to a global

value. Most values are local and bound on a variable binding stack maintained by the system when functions are called

or code blocks entered.

2. Each symbol nm has an associated function cell where the ALisp function definition for the function named nm is

stored. The function cell of a Lisp symbol nm is retrieved with the CommonLisp function (SYMBOL-FUNCTION nm)

that returns the function definition of nm if there is one; otherwise it returns nil. A function definition can be one of

the following:

i) A lambda function which is a function defined in Lisp (Sec. 3.2.1). A lambda function definition is

 7

represented as a list, (LAMBDA args . body). It is defined by the system special function DEFUN,

e.g.:

 > (defun rev (x)(cons (cdr x)(car x)))

 REV

 > (rev '(1 2))

 ((2) . 1)

ii) A macro (Sec.3.13) is defined by the system special function DEFMACRO. A macro is a Lisp

function that takes as its argument a form and produces a new equivalent form. Many system functions

are defined as macros. They are Lisp’s rewrite rules.

iii) An external Lisp function is implemented in C [2]. A external Lisp function is represented by a special

data type named EXTFN and printed as #[EXTFNn fn], where n is the arity of the function and fn is its

name. E.g. the definition of CONS is printed as #[EXTFN2 CONS]. The EXTFN data structure

contains a pointer to the C definition. For example:

 > (symbol-function 'car)

 #[EXTFN1 CAR]

iv) A variable arity external Lisp function can take a variable number of actual arguments. It definition is

printed as #[EXTFN-1 fn]. For example:

 > (symbol-function 'list)

 #[EXTFN-1 LIST]

v) A special form is a external Lisp functions with varying number of arguments and where the

arguments are not evaluated the standard way. Special forms are printed as #[EXTFN-2 fn]. For

example:

 > (symbol-function 'quote)

 #[EXTFN-2 QUOTE]

3. The property list (Sec 3.2.3) associates property values with the symbol and other symbols called property indicators.

In function descriptions of this document X... indicates that the expression X can be repeated, whle [X] indicates that X is

optional. Described functions that are similar or equivalent to standard CommonLisp functions are marked with a ’*’ under Type.

The Type of a function can be EXTFN (defined in C), SPECIAL (special form), LAMBDA (defined in Lisp), or MACRO (Lisp

macro) (Sec. 3.13). A system variable can be either SPECIAL (dynamically scoped) or GLOBAL (Sec. 3.2.2).

3.2.1. Defining functions

This section describes the system functions to define and manipulate Lisp functions.

Function Type Description

(DEFC FN DEF) EXTFN Associate the function definition DEF with the atom FN. Same as

SYMBOL-SETFUNCTION.

(DEFUN FN ARGS FORM...) *SPECIAL Define a new Lisp function.

(EXTFNP X) LAMBDA Return T if X is a function defined in C.

(FLET ((FN DEF)...) FORM...) *MACRO Bind local function definitions and evaluate the forms FORM...

(GETD X) EXTFN Get function definition of atom NM. Same as SYMBOL-

 8

FUNCTION

(LAMBDAP X) LAMBDA Return T if X is a lambda expression.

(MOVD F1 F2) EXTFN Make F2 have the same function or macro definition as F1.

(SYMBOL-FUNCTION S)

 *EXTFN Get the function definition associated with the symbol S. Same as

GETD.

(SYMBOL-SETFUNCTION S D)

 EXTFN Set the function definition of symbol S to D. Same as DEFC.

3.2.2. Binding variables

Symbols hold variable bindings. Variables bindings can be either global or bound locally inside a Lisp function or a code block.

Local variables are bound when defined as formal parameters of functions or when locally introduced when a new code block is

defined using LET or other variable binding expressions. Both local and global variables can be (re)assigned using the special

system function SETQ.

In ALisp global variables should be declared before they are used, using the system macro DEFGLOBAL. ALisp gives warnings

when setting undeclared global variables or using them in functions. There are a number of built-in global variables that store

various system information and system objects.

For example:

> (setq x 1)

WARNING! Setting undeclared global variable: X  because X is undeclared

1

lisp 1> (defglobal _g_)  declare _G_ as global

NIL

lisp 1> (setq _g_ 1)  assign number 1 to _G_

1

lisp 1> _g_  evaluate _G_

1

lisp 1> (let ((_g_ 3))  New block where local variable _G_ initalized to 3

 g)  Value of local variable _G_ returned from block

3

lisp 1> _g_

1  Global value did not change

LET defines a new code block with new variables. For example:

> (let ((x 1)  Local X initialized to 1

 Y  Local Y initialized to NIL

 (z 2))  Local Z initialized to 2

 (list x y z))  Return list of the local variables

(1 NIL 2)

Unlike most programming languages, global Lisp variables can also be dynamically scoped so that they are rebound when a code

block is entered and restored back to their old values when the code block is exited [1]. In CommonLisp dynamically scoped

variables are declared using the special system function DEFVAR. Dynamically scoped variables provide a controlled way to

handle global variables as they are restored as local variables are when a code block is exited. Usually dynamically scoped

variables have ‘*’ as first character. For example, assume we have a package to do trigonometric computations using radians,

degrees, or new degrees:

 9

> (defvar *angle-unit* 1)  Units in radians to measure angles

ANGLE-UNIT

> (defun mysin(x)(sin (* x *angle-unit*)))

MYSIN

> (defun hl (ang x)(/ x (mysin ang)))

HL

> (hl 0.785398 10)  Compute length of hypotenuse using radians

14.1421

> (setq *angle-unit* (/ 3.1415926 180))  Let’s use degrees instead

0.0174533

> (hl 45 10)

14.1421

> (setq *angle-unit* (/ 3.1415926 200))  Let’s use new degrees instead

0.015708

> (hl 50 10)

14.1421

Now suppose we want to have a special version of HL that computes the hypotenuse only for regular degrees:

> (defun hyplen (ang x)

 (let ((*angle-unit* (/ 3.1415926 180)))  Rebind *angle-unit* inside HL

 (hl ang x)))

HYPLEN

> (hyplen 45 10)  Using degrees inside HYPLEN

14.1421

> (hl 50 10)

14.1421  Restored back to new degrees outside HYPLEN

The following system functions handle variable bindings.

Function Type Description

(BOUNDP VAR) *EXTFN Return T if the variable VAR is bound. Unlike CommonLisp,

BOUNDP works not only for special and global variables but also

for local variables.

(CONSTANTP X) *SUBR Returns T if X evaluates to itself. Same as KWOTED.

(DEFGLOBAL VAR [VAL][DOC])MACRO Declare VAR to be a global variable with optional initial value

VAL and documentation string DOC. Unlike dynamically scoped

variables global variables are not temporarily reset locally with

LET/LET*. They are much faster to look up than dynamically

scoped variables (see DEFVAR).

(DEFVAR VAR [VAL][DOC]) *SPECIAL Declare VAR to be a special variable with optional initial value

VAL and documentation string DOC. Special variables are

dynamically scoped. See also DEFGLOBAL.

(GLOBAL-VARIABLE-P VAR) LAMBDA Return true if VAR is declared to be a global variable.

(LET ((VAR INIT)...) FORM...) *MACRO Bind local variables VAR to initial values INIT in parallel and

evaluate the forms FORM.... Instead of a pair the binding can also

be just a variable, binding the variable to NIL.

(LET* ((VAR INIT)...) FORM...) *MACRO As LET but local variables are initialized in sequence.

(PROG-LET ((VAR INIT...)...) FORM...)

 10

 MACRO As LET but if (RETURN V) is called in FORM... then PROG-LET

will exit with the value V. The classical PROG and GO are NOT

implemented in ALisp. The most common use of PROG is as a LET

with a RETURN, which is supported by PROG-LET.

(PROG-LET* ((VAR INIT...)...) FORM...)

 MACRO This function is similar to PROG-LET, but binds the local variables

sequentially like LET*.

(QUOTE X) *SPECIAL Return X unevaluated.

(RESETVAR VAR VAL FORM...) MACRO Temporarily reset global value of VAR to VAL while evaluating

FORM... The value of the last evaluated form is returned. After the

evaluation VAR is reset to its old global value. This is similar to

declaring VAR being special with DEFVAR as specified by the

CommonLisp standard. DEFVAR should normally be used.

(SET VAR VAL) *EXTFN Bind the value of the value of VAR to VAL. This function is

normally not used; the normal function to set variable values is

SETQ that does not evaluate its first argument.

(SETQ VAR VAL) *SPECIAL Change the value of the unevaluated variable VAR to VAL. (Sec.

3.15) is a generalization of SETQ to allow updating of many

different kinds of data structures rather than just setting variable

values.

(PSETQ VAR1 VAL1 … VARk VALk)

 *MACRO Set in parallell variable VAR1 to VAL1,…,VARk to VALk using

SETQ.

(SPECIAL-VARIABLE-P V) *EXTFN Return T if the variable V is declared as special with DEFVAR.

(SYMBOL-VALUE S) *EXTFN Get the global value of the symbol S. Returns the symbol

NOBIND if no global value is assigned.

3.2.3. Symbol manipulation

The following system functions do other operations on symbols than handling variable bindings, e.g. managing

property lists, testing different kinds of symbols, or converting them to other data types.

A property list is represented as a list with an even number of elements where every second element are property

indicators and every succeeding element represents the corresponding property value. Property lists are often used

for associating system information with symbols and can also be used for storing user data. However, notice that, as

atoms are not garbage collected, dynamic databases should not be represented with property lists. The Lisp function

GET is used for accessing property lists (Sec. 3.2.3).

 Function Type Description

(ADDPROP S I V FLG) EXTFN Add a new value V to the list stored on the property I of the symbol

S. If FLG = NIL the new value is added to the end of the old value,

otherwise it is added to the beginning.

(EXPLODE S) EXTFN Unpack a symbol S into a list of single character symbols. Symbols

are exploded into symbols and strings into strings. For example:
(EXPLODE ’ABC) => (A B C)

(EXPLODE "abc") => ("a" "b" "c"))

(GENSYM) *LAMBDA Generate new symbols named G:1, G:2, etc.

(GET S I) *EXTFN Get the property value of symbol S having the indicator I.

(GETPROP S I) EXTFN Same as GET.

 11

(KEYWORDP X) *EXTFN Return T if X is a keyword (i.e. symbol starting with ’:’).

(KEYWORD-TO-ATOM X) EXTFN Convert a keyword X into a regular symbol without the ’:’.

(MKSYMBOL X) EXTFN Coerce a string to a symbol. The characters of X will be capitalized.

(PACK X...) LAMBDA Pack the arguments X... into a new symbol.

(PACKLIST L) LAMBDA Pack the elements of the list L into a new symbol.

(PUT S I V) *EXTFN Set the value stored on the property list of the symbol S under the

indicator I to V. Same as (SETF (GET S I) V).

(PUTPROP A I V) EXTFN Same as PUT.

(REMPROP S I) *EXTFN Remove property stored for the indicator I in the property list of

symbol S.

(SYMBOL-PLIST S) *EXTFN Get the entire property list of the symbol S.

(SYMBOLP X) *EXTFN Return true if X is a symbol.

3.3. Lists

Lists (data type name LIST) represent list structures as binary trees. There are many system functions for manipulating lists. Two

classical Lisp functions are CAR to get the head of a list, and CDR to get the tail. For example:

> (setq xx '(a b c))

(A B C)

> (car xx)

A

> (cdr xx)

(B C)

>

Function Type Description

(ADJOIN X L) *EXTFN Similar to (CONS X L) but does not add X if it is already member

of L (tests with EQUAL).

(ANDIFY L) LAMBDA Make an AND form of the forms in L.

(APPEND L...) *MACRO Make a copy of the concatenated lists L... (APPEND X) copies the

top level elements of the list X.

(APPEND2 X Y) EXTFN Append two lists X and Y.

(ASSOC X ALI) *EXTFN Search association list ALI for a pair (X .Y). Tests with EQUAL.

(ASSQ X ALI) EXTFN Similar to ASSOC but tests with EQ.

(ATOM X) *EXTFN True if X is not a list or if it is NIL.

(BUILDL L X) LAMBDA Build a list of same length as L whose elements are all the same X.

(BUILDN N X) LAMBDA Build a list of length N whose elements all are all the same X:

(BUTLAST L) *EXTFN Return a copy of list L minus its last element.

(CAAAR X) *EXTFN (CAR (CAR (CAR X)))

(CAADR X) *EXTFN (CAR (CAR (CDR X)))

(CAAR X) *EXTFN (CAR (CAR X))

(CADAR X) *EXTFN (CAR (CDR (CAR X)))

(CADDR X) *EXTFN (CAR (CDR (CDR X))), same as (THIRD X)

(CADR X) *EXTFN (CAR (CDR X)), same as (SECOND X)

 12

(CAR X) *EXTFN Return the head of the list X, same as (FIRST X).

(CDAAR X) *EXTFN (CDR (CAR (CAR X)))

(CDADR X) *EXTFN (CDR (CAR (CDR X)))

(CDAR X) *EXTFN (CDR (CAR X))

(CDDAR X) *EXTFN (CDR (CDR (CAR X)))

(CDDDDR X) *LAMBDA (CDR (CDR (CDR (CDR X))))

(CDDDR X) *EXTFN (CDR (CDR (CDR X)))

(CDDR X) *EXTFN (CDR (CDR X))

(CDR X) *EXTFN Return the tail of the list X, same as (REST X).

(CONS X Y) *EXTFN Construct new list cell.

(CONSP X) *EXTFN Test if X is a list cell.

(COPY-TREE L)

 *EXTFN Make a copy of all levels in list structure. To copy the top level

only, use (APPEND L).

(EIGHTH L) *LAMBDA Get the eighth element from list L.

(FIFTH L) *LAMBDA Get fifth element in list L.

(FIRST L) *EXTFN Get first element in list L. Same as (CAR L).

(FIRSTN N L) LAMBDA Return a new list consisting of the first N elements in the list L.

(FOURTH L) *LAMBDA Get fourth element in list L.

(GETF L I) *EXTFN Get value stored under the indicator I in the property list L.

(IN X L) EXTFN IN returns T if there is some substructure in L that is EQ to X.

(INTERSECTION X Y) *EXTFN Build a list of the elements occurring in both the lists X and Y.

Tests with EQUAL.

(INTERSECTIONL L) LAMBDA Make the intersection of the lists in list L.

(LAST L) *EXTFN Return the last tail of the list L. E.g.

 (LAST ’(1 2 3)) => (3)

(LDIFF L TL) *LAMBDA Make copy of L up to, but not including, its tail TL.

(LENGTH X) *EXTFN Compute the number of elements in a list, the number of characters

in a string, or the size of a vector.

(LIST X...) *EXTFN Make a list with the elements X...

(LIST* X...) *EXTFN Is similar to LIST except that the last argument is used as the end of

the list.

For example:
(LIST* 1 2 3) => (1 2 . 3)

(LIST* 1 2 ’(A)) => (1 2 A)

(LISTP X) *EXTFN This function returns true if X is a list cell or NIL.

(MEMBER X L) *EXTFN Tests if element X is member of list L, Tests with EQUAL. Returns

the tail of L where X is found first. For example:
(MEMBER 1.2 ’(1 1.2 1.2 3)) => (1.2 1.2 3)

(MEMQ X L) EXTFN as MEMBER but tests with EQ instead of EQUAL.

(MERGE A B FN) *LAMBDA Merge the two lists A and B with FN as comparison function.

For example:

 (MERGE ’(1 3) ’(2 4) (function <)) => (1 2 3 4)

(MKLIST X) EXTFN X is returned if it is NIL or a list. Otherwise (LIST X) is returned.

(NATOM X) *EXTFN Return T if X is not an atom and not NIL. Anything not being a list

is an atom.

(NINTH L) *LAMBDA Get ninth element in list L.

 13

(NTH N L) *EXTFN Get the Nth element of the list L with enumeration starting at 0.

(NTHCDR N L) *EXTFN Get the Nth tail of the list L with enumeration starting at 0.

(NULL X) *EXTFN True if X is NIL.

(PAIR X Y) EXTFN Same as PAIRLIS.

(PAIRLIS X Y) *EXTFN Form an association list by pairing the elements of the lists X and

Y.

(POP L) *SPECIAL Same as (SETQ L (CDR L)).

(PUSH X VAR) *MACRO Add X to the front of the list bound to the variable VAR, same as

(SETQ VAR (CONS X VAR)).

(PUTF L I V) EXTFN Set the value of the indicator I on the property list L to V.

(RECONS X Y L) LAMBDA Similar to (CONS X Y) but if the result object has the same head

and tail as L then L is returned. Useful for avoiding to copy

substructures.

(REMOVE X L) *EXTFN Remove all occurrences of X from the list L. Tests with EQUAL.

(REST L) *LAMBDA Same as CDR.

(REVERSE L) *EXTFN Return a new list whose elements are the reverse of the top level of

L.

(SECOND L) *EXTFN Get second element in list L. Same as CADR.

(SET-DIFFERENCE X Y) *EXTFN Return a list of the elements in X which are not member of the list

Y. Tests with EQ.

(SEVENTH L) *LAMBDA Get the seventh element of the list L.

(SIXTH L) *LAMBDA Get the sixth element of the list L.

(SORT L FN) *LAMBDA Sort the elements in the list L using FN as comparison function.

(SUBLIS ALI L) *EXTFN Substitute elements in the list structure L as specified by the

association list ALI that has the format ((FROM . TO)...).

For example:
(SUBLIS ’((A . 1)(B . 2)) ’((A) B A)) => ((1) 2 1)

(SUBPAIR FROM TO L) EXTFN Substitute elements in the list L as specified by the two lists FROM

and TO. Each element in FROM is substituted with the

corresponding element in TO. For example:
(SUBPAIR ’(A B) ’(1 2) ’((A) B A)) => ((1) 2 1)

(SUBSETP X Y) *LAMBDA Return true if every element in the list X also occurs in the list Y.

(SUBST TO FROM L) *EXTFN Substitute FROM with TO in the list structure L. Tests with

EQUAL. For example:
(SUBST ’1 ’A ’((A) B A)) => ((1) B 1)

(TENTH L) *LAMBDA Get the tenth element in the list L.

(THIRD L) *EXTFN Get the third element of the list L. Same as CADDR.

(UNION X Y) *EXTFN Construct a list of the elements occurring in both the lists X and Y.

Tests with EQ.

(UNIONL L) LAMBDA Construct a list of the elements occurring in all the elements of the

list of lists L.

(UNIQUE L) EXTFN Remove all duplicate elements in the list L. Tests with EQUAL

3.3.1. Destructive list functions

The list functions introduced so far are constructing new lists out of other objects. For example, (APPEND X Y) makes a new list

by copying the list X and then concatenating the copied list with the list Y. The old X is removed by the garbage collector if no

longer needed. If X is long APPEND will generate quite a lot of garbage. This is not very serious because ALisp has a very

 14

efficient garbage collector that immediately discards no longer used objects. However, sometimes one needs to actually modify

list structures by replacing pointers. One may wish to do so for efficiency reasons as, after all, the generation of garbage has its

cost. Another reason is that some data structures maintained as lists are updated. Therefore Lisp has a number of destructive list

manipulating functions that replace pointers rather than extensively copying lists. Notice that such destructive functions may

cause bugs that are difficult to find. Therefore destructive functions should be avoided if possible. As an example of a destructive

list, the function (RPLACA X Y) replaces (CAR X) with Y. For example:

> (setq a '(1 2 3 4))

(1 2 3 4)

> (rplaca (cddr a) 8)  Replace (CAR (CDDR X)) with 8

(8 4)

> a  The list held in A has changed

(1 2 8 4)

> (rplaca a a)  This makes a circular list. Don’t do this!

((((((((((((((((((((((((((( That makes the printer loop! (use CTRL-C)

CommonLisp makes it very easy to make destructive list operations using SETF. (SETF is explained in 3.15.)

The following destructive system list functions are supported:

Function Type Description

(ATTACH X L) EXTFN Similar to (CONS X L) but destructive, i.e. the head of the list L is

modified so that all pointers to L will point to the extended list after

the attachment. This does not work if L is not a list, in which case

ATTACH works like CONS.

(DELETE X L) *EXTFN Remove destructively the elements in the list L that are EQ to X.

Value is the updated L. If X is the only remaining element in L the

operation is not destructive and NIL is returned.

(DMERGE X Y FN) LAMBDA Merge lists X and Y destructively with FN as comparison function.

For example:

(DMERGE ’(1 3 5) ’(2 4 6) #’<) => (1 2 3 4 5 6)

The value is the merged list; the merged lists are destroyed. See also

MERGE.

(NCONC L...) *MACRO Destructively concatenate the lists L... (destructive APPEND) and

return the concatenated list.

(NCONC1 L X) EXTFN Add X to the end of L destructively, i.e. same as

(NCONC L (LIST X))

(NREVERSE L) *EXTFN Destructively reverse the list L. The value is the reversed list. L will

be destroyed. Very fast reverse.

(RPLACA L X) *EXTFN Destructively replace the head of list L with X.

(RPLACD L X) *EXTFN Destructively replace the tail of list L with X.

(SMASH X Y) LAMBDA Replace destructively the list X with the list Y.

 15

3.4. Strings

Strings (data type name STRING) represent text strings of arbitrary length. Strings containing the characters “ or \ must precede

these with the escape character, \. Examples of strings:

> (setq a "This is a string")

"This is a string"

> (setq b "String with string delimiter \" and the escape character \\")

"String with string delimiter \" and the escape character \\"

> (concat a b)

"This is a stringString with string delimiter \" and the escape character \\"

>

Function Type Description

(CHAR-INT STR) *EXTFN Returns the integer encoding the first character in string STR.

Unlike CommonLisp there is no special data type for characters in

ALisp and instead CHAR-INT takes a string rather than a character

as argument.

(CONCAT STR...) EXTFN Coerce the arguments STR... to strings and concatenate them.

(EXPLODE STR) EXTFN Makes a list of the characters in X (list of strings).

(INT-CHAR X) *EXTFN If possible, return the character string with the encoding integer X,

otherwise return NIL. Unlike CommonLisp there is no special data

type for characters in ALisp and instead a string with a single

character is used.

(LENGTH S) *EXTFN Returns the number of characters in string S.

(MKSTRING X) EXTFN Coerce an atom to a string.

(STRING-DOWNCASE STR) *EXTFN Change all ASCII characters in string STR into lower case.

(STRING-UPCASE STR) *EXTFN Change all ASCII characters in the string STR to upper case.

(STRING< S1 S2) *EXTFN Return T if the string S1 alphabetically precedes S2.

(STRING= S1 S2) *EXTFN Return T if the strings S1 and S2 are the same. EQUAL works too.

(STRING-LEFT-TRIM CH STR) *EXTFN Remove initial characters in STR occurring in CH.

(STRING-LIKE STR PAT) EXTFN Returns T if PAT matches string STR. PAT is regular expression

where:

 * matches any sequence of characters (zero or more)

 ? matches any character

 [SET] matches any character in the specified set,

 [!SET] or [^SET] matches any character not in the specified set.

(STRING-LIKE-I STR PAT) EXTFN Case insensitive STRING-LIKE

(STRING-POS STR X) EXTFN Return the character position of the first occurrence of the string X

in STR. The character positions are enumerated from 0 and up.

(STRING-RIGHT-TRIM CH STR)*EXTFN Remove trailing characters in STR occurring in CH.

(STRING-TRIM CH STR) *EXTFN Remove both initial and trailing characters in STR occurring in CH.

(STRINGP X) *EXTFN Returns true if X is a string.

(SUBSTRING P1 P2 STR) EXTFN Returns the substring in STR starting at character position P1 and

ending in P2. The character positions are enumerated from 0 and

up.

 16

3.5. Numbers

Numbers represent numeric values. Numeric values can either be integers (data type name INTEGER) or double precision

floating point numbers (data type name REAL). Integers are entered to the Lisp reader as an optional sign followed by a sequence

of digits, e.g.

1234 -1234 +1234

Examples of legal floating point numbers:

1.1 1.0 1. -1. -2.1 +2.3 1.2E3 1.e4 -1.2e-20

The following system functions operate on numbers.

Function Type Description

(+ X...) *EXTFN Add the numbers X...

(- X Y) *EXTFN Subtract Y from X.

(1+ X) *MACRO Add one to X which can be both integer and real.

(1++ X) MACRO Increment the variable X.

(1- X) *MACRO Subtract one from X which can be both integer and real.

(1-- X) MACRO Decrement the variable X.

(* X...) *EXTFN Multiply the numbers X...

(/ X Y) *EXTFN Divide X with Y.

(ACOS X) *EXTFN Compute arc cosine of X.

(ASIN X) *EXTFN Compute arc sine of X.

(ATAN X) *EXTFN Compute arc tangent of X.

(COS X) *EXTFN Compute cosine.

(CEILING X) *EXTFN Compute ceiling of X.

(EXP X) *EXTFN Exponent eX

(EXPT X Y) *EXTFN Compute exponent XY.

(FLOOR X) *EXTFN Compute largest integer <= X.

(FRAND LOW HIGH) EXTFN Generates a real random number in interval [LOW,HIGH)

(INTEGERP X) *EXTFN True if X is an integer.

(LOG X) *EXTFN Compute natural logarithm of X..

(MAX X…) *EXTFN Return the largest of the numbers X….

(MIN X…) *EXTFN Return the smallest of the numbers X….

(MINUS X) EXTFN Negate the number X. Same as calling (- X).

(MINUSP X) *LAMBDA True if (< X 0).

(MOD X Y) *EXTFN Return the remainder when dividing X with Y. X and Y can be

integers or floating point numbers.

(NUMBERP X) *EXTFN True if X is number.

(PLUSP X) *LAMBDA True if (> X 0).

(RANDOM N) *EXTFN Generate a random integer between in interval [0,N).

(RANDOMINIT N) EXTFN Generates new seed for RANDOM

(ROUND X) *EXTFN Round X.

 17

(SQRT X) *EXTFN Compute the square root of the number X.

(SIN X) *EXTFN Compute sinus.

(TAN X) *EXTFN Compute tangent.

(ZEROP X) *LAMBDA True if (= X 0).

3.6. Logical Functions

In CommonLisp NIL is regarded as false and any other value as true. The global variable T, bound to itself, is usually used for

representing true. For example:

> (setq x t)  regarded as true

T

> (setq y nil)  regarded as false

NIL

> (setq z 1)  regarded as true

1

> (or x y z)

T  X = T is the first true value

> (and x y z)

NIL  Y is NIL

> (or z x y)

1  Z = 1 is the first true value

> (not y)

T  Y is NIL

> (not z)

NIL  Z is 1 (i.e. true)

The following functions return or operate on logical values.

Function Type Description

(< X Y) *EXTFN True if the number X is less than Y.

(<= X Y) *EXTFN True if the number X is less than or equal to Y.

(= X Y) *EXTFN Tests if two numbers are the same. For example:

 (= 1 1.0) => T, while

 (EQUAL 1 1.0) => NIL

(> X Y) *EXTFN True if the number X is greater than Y.

(>= X Y) *EXTFN True if the number X is greater than or equal to Y

(AND X...) *SPECIAL Evaluate the forms X... and return NIL when the first form

evaluated to NIL is encountered. If no form evaluates to NIL the

value of the last form is returned.

(COMPARE X Y) EXTFN Compare order of two objects. Return 0 if they are equal, -1 if less,

and 1 if greater.

(EQ X Y) *EXTFN Test if X and Y have the same address.

(EQUAL X Y) *EXTFN Test if objects X and Y are equivalent. Notice that, in difference to

CommonLisp, arrays are equal if all their elements are equal, and

equality can be defined for user defined data types too [2].

(EVENP X) *LAMBDA True if X is an even number.

 18

(NEQ X Y) *EXTFN Same as (NOT (EQ X Y))

(ODDP X) *LAMBDA True if X is an odd number.

(OR X...) *SPECIAL Evaluate the forms X... until some form does not evaluate to NIL.

Return the value of that form.

(NOT X) *EXTFN True if X is NIL; same as NULL.

3.7. Arrays

Arrays (data type name ARRAY) in ALisp representation of one-dimensional sequences. The elements of an array can be of any

type. Arrays are printed using the notation #(e1 e2 …). For example:

> (setq a #(1 2 3))

#(1 2 3)

Arrays are allocated with the function (MAKE-ARRAY SIZE). For example:

> (make-array 3)

#(NIL NIL NIL)

Notice that ALisp only supports 1-dimensional arrays (vectors) while CommonLisp allows arrays of any dimensionality.

Adjustable arrays (datatype ADJARRAY) are arrays that can be dynamically increased in size. They are allocated with the

function

(MAKE_ARRAY SIZE :ADJUSTABLE T)

Arrays can be enlarged with the function

(ADJUST-ARRAY ARRAY NEWSIZE)

Enlargement of adjustable arrays is incremental, and does not copy the original array. Non-adjustable arrays can be enlarged as

well, but the enlarged array may or may not be a copy of the original one depending on its size. In other words, you have to

rebind non-adjustable arrays after you enlarge them.

For example:

> (setq a (make-array 3))

#(NIL NIL NIL)

> (adjust-array a 6)

#(NIL NIL NIL NIL NIL NIL)

> a

#(NIL NIL NIL)

> (setq a (make-array 3 :adjustable t))

#(NIL NIL NIL)

> (adjust-array a 6)

#(NIL NIL NIL NIL NIL NIL)

> a

#(NIL NIL NIL NIL NIL NIL)

>

Function Type Description

 19

(ADJUST-ARRAY A NEWSIZE) *EXTFN Increase the size of the array A to NEWSIZE. If the array is

declared to be adjustable at allocation time it is adjusted in-place,

otherwise an array copy may or may not be returned.

(AREF A I) *MACRO Access element I of the array A. Enumeration starts at 0. Unlike

CommonLisp, only one dimensional arrays are supported.

(ARRAY-TOTAL-SIZE A) *EXTFN Return the number of elements in the (one-dimensional) array A.

(ARRAYP X) *EXTFN True if X is an array (fixed or adjustable).

(ARRAYTOLIST A) EXTFN Convert an array A to a list.

(CONCATVECTOR X Y) LAMBDA Concatenate arrays X and Y.

(COPY-ARRAY A) *EXTFN Make a copy of the non-adjustable array A.

(ELT A I) EXTFN Same as (AREF A I).

(LISTTOARRAY L) EXTFN Convert a list to a non-adjustable array.

(LENGTH V) *EXTFN Returns the number of elements in vector V.

(MAKE-ARRAY SIZE :INITIAL-ELEMENT V :ADJUSTABLE FLG)
 *MACRO Allocate a one-dimensional array of pointers with SIZE elements.

:INITIAL-ELEMENT specifies optional initial element values. If

:ADJUSTABLE is true an adjustable array is created; the default is a non-

adjustable array.

(PUSH-VECTOR A X) EXTFN Adjusts the array A with one element X at the end.

(SETA A I V) EXTFN Set the element I in the array A to V. Returns V. Same as (SETF

(AREF A I) V).

(SWAP A E1 E2) LAMBDA Swap elements E1 and E2 in the array A.

(VECTOR X...) *EXTFN Make an array with elements X..

3.8. Hash Tables

Hash tables (data type name HASHTAB) are unordered dynamic tables that associate values with ALisp objects as keys. Hash

tables are allocated with

 (MAKE-HASH-TABLE)

Notice that, unlike standard CommonLisp, no initial size is given when hash tables are allocated. Instead the system will

automatically and incrementally grow (or shrink) hash tables as they evolve.

Elements of a hash table are accessed with

(GETHASH KEY HASHTAB)

Elements of hash tables are updated with

(SETF (GETHASH KEY HASHTAB) NEW-VALUE)

Iteration over all elements in a hash table is made with

(MAPHASH (FUNCTION(LAMBDA (KEY VAL) ...)) HASHTAB)

Notice that comparisons of hash table keys in CommonLisp is by default using EQ and not EQUAL. Thus, e.g., two strings with

the same contents do not match as hash table keys unless they are pointers to the same string. Normally EQ comparisons are

useful only when the keys are symbols. To specify a hash table comparing keys with EQUAL (e.g. for numeric keys or strings)

use

(MAKE-HASH-TABLE :TEST (FUNCTION EQUAL))

 20

Example:

> (setq ht1 (make-hash-table))

#[HASHTAB 2547944]

> (setf (gethash "hello" ht1) "world")

"world"

> (gethash "hello" ht1)

NIL

> (setq ht2 (make-hash-table :test (function equal)))

#[HASHTAB 2548104]

> (setf (gethash "hello" ht2) "world")

"world"

> (gethash "hello" ht2)

"world"

>

The following system functions operate on hash tables:

Function Type Description

(CLRHASH HT) EXTFN Clear all entries from hash-table HT and return the empty table.

(GETHASH K HT) *EXTFN Get value of element with key K in hash table HT.

(HASH-BUCKET-FIRSTVAL HT) EXTFN Return the value for the first key stored in the hash table HT. What

is the first key is undefined and depends on the internal hash

function used.

(HASH-BUCKETS HT) EXTFN Compute the number of buckets in the hash table HT.

(HASH-TABLE-COUNT HT) *EXTFN Compute the number of elements stored in the hash table HT.

(MAKE-HASH-TABLE :SIZE S :TEST EQFN)

 *MACRO Allocate a new hash table. The CommonLisp parameter :SIZE is

ignored as the hash tables in ALisp are dynamic and scalable. The

keyword parameter :TEST specifies the function to be used for

testing equivalence of hash keys. :TEST can be (FUNCTION EQ)

(default) or (FUNCTION EQUAL).

(MAPHASH FN HT V) *EXTFN Apply (FN KEY VAL V) on each key and value of the hash table

HT.

(PUTHASH K HT V) EXTFN Set the value stored in the hash table HT under the key K to V.

Same as (SETF (GETHASH K HT) V).

(REMHASH K HT) EXTFN Remove the value stored in the hash table HT under the key K.

(SXHASH X) *EXTFN Compute a hash code for object X and a non-negative integer. If

(EQUAL X Y) then (SXHASH X) = (SXHASH Y).

3.9. Main memory B-trees

Main memory B-trees (datatype BTREE) are ordered dynamic tables that associate values with Alisp objects as keys. The

interfaces to B-trees are very similar to those of hash tables. The main difference between B-trees and hash table are that B-trees

are ordered by the keys and that there are efficient tree search algorithms for finding all keys in a given interval. B-trees are

slower than hash tables for equality searches.

B-trees are allocated with

 21

(MAKE-BTREE)

Elements of a B-tree are accessed with

(GET-BTREE KEY BTREE)

SETF is used for modifying accessed B-tree element.

For example:

> (setq bt (make-btree))

#[BTREE 3396632]

> (setf (get-btree "hello" bt) "world")

"world"

> (get-btree "hello" bt)

"world"

>

System functions operating on main memory B-trees:

Function Type Description

(GET-BTREE K BT) EXTFN Get value of element with key K in B-tree BT. Comparison uses

COMPARE.

(MAKE-BTREE) EXTFN Allocate a new B-tree.

(MAP-BTREE BT LOWER UPPER FN)

 EXTFN Apply ALisp function (FN KEY VAL) on each key-value pair in B-

tree BT whose key is larger than or equal to LOWER and less than

or equal to UPPER. If any of LOWER or UPPER are the symbol ’*’

it means that the interval is open in that end. If both LOWER and

UPPER are ’*’ the entire B-tree is scanned.

(PUT-BTREE K BT V) EXTFN Set the value stored in the B-tree BT under the key K to V. Same as

(SETF (GET-BTREE K BT) V). V=NIL => marking element as

deleted. NOTICE that the elements are not physically removed

when V=NIL; they are just marked as deleted. To physically

remove them you have to copy the B-tree.

3.10. Functional arguments and dynamic forms

Variables bound to functions or even entire expression can be invoked or evaluated by the system. Functional arguments (higher

order functions) provide a very powerful abstraction mechanism that actually can replace many control structures in conventional

programming languages. The map functions in Sec. 3.11 are examples of elaborate use of functional arguments.

The simplest case for functional arguments is when a function is passed as arguments to some other function. For example,

assume we want to make a max function, (SUM2 X Y FN) that calls the functional argument FN with X and Y as actual

parameters and then adds together the result (i.e. sum2 = fn(x) + fn(y)):

> (defun sum2 (x y fn)

(+ (funcall fn x)(funcall fn y)))  The system function FUNCALL calls FN

 22

SUM2

> (sum2 1 2 (function sqrt))  sqrt(1) + sqrt(2)

2.41421

In CommonLisp, the system function FUNCALL must be used to call a function bound to a functional argument. Also notice that

FUNCTION should be used (rather than QUOTE) when passing a functional argument, to be explained next.

3.10.1. Closures

In the example FUNCTION is used when passing a functional argument. QUOTE should not be used when passing functional

arguments. The reason is that otherwise the system does not know that the argument is a function. This matters particularly if the

functional argument is a lambda expression. Consider a function to compute XN + YN using SUM2:

> (defun sumpow (x y pow)

 (sum2 x y (function  FUNCTION must be used here

 (lambda (z)  lambda expression = anonymous function

 (expt z pow)))))  POW is free variable in lambda

SUMPOW

> (sumpow 1 2 2)

5

Free lambda expressions [1] as this one are very useful when passing free variables, like POW, into a functional argument. Now,

let’s see what happens if QUOTE was used instead of FUNCTION:

> (defun sumpow (x y pow)

 (sum2 x y (quote  This is wrong!

 (lambda (z)

 (expt z pow)))))

(SUMPOW REDEFINED)

Suspicious use of QUOTE rather than FUNCTION: (QUOTE (LAMBDA (Z) (EXPT Z POW))) in

SUMPOW

SUMPOW

lisp 1> (sumpow 1 2 2)

Error 1, Unbound variable: POW

When evaluating: POW

(FAULTEVAL BROKEN)

In SUM2 brk>:r

As you can see, the system warns that QUOTE is used instead of FUNCTION and then the variable POW is unbound when

SUMPOW is called. The reason is that the system QUOTE returns its argument unchanged while FUNCTION makes a closure

of its argument if it is a lambda expression. A closure is a special datatype that holds a function (lambda expression) together

with the local variables bound where it is called. In our example, the local variable POW is bound when SUM2 is called in

SUMPOW. Thus always use FUNCTION when passing functional arguments.

3.10.2. Applying functions with variable arity

FUNCALL does not work if we don’t know until at run time the number of arguments of the function to call. In particular

FUNCALL cannot be used if we want to call a function with variable arity, like + (plus). What we need is a way to construct a

dynamic argument list before we call the function. For this the system function APPLY is used. For example, the function

(COMBINEL X Y FN) applies FN on the elements of X and Y and combines the results also using FN:

> (defun combinel (x y fn)

 23

 (funcall fn

 (apply fn x)

 (apply fn y)))

COMBINEL

> (combinel '(1 2 3) '(4 5 6) (function +))

21

In this case we have to construct the arguments as a list to the inner function applications, and therefore APPLY has to be used.

COMBINEL could also have been written less efficiently as:

> (defun combinel (x y fn)

 (apply fn

 (list

 (apply fn x)

 (apply fn y))))

(COMBINEL REDEFINED)

COMBINEL

> (combinel '(1 2 3) '(4 5 6) (function +))

21

3.10.3. Dynamic evaluation

The most general way to execute dynamic expressions in Lisp is to call the system function EVAL. It takes as argument any Lisp

form (i.e. expression) and evaluates it. For example:

> (setq a 1)

1

> (eval '(list a))

(1)

> (eval (list a))  This fails because we are trying to evaluate the form (1)

Error 15, Undefined function: 1

When evaluating: (1)

(FAULTEVAL BROKEN)

In *BOTTOM* brk>:r

 > (list a)  This gives the same result as the ALisp top loop calls

eval

(1)

EVAL is actually very seldomly used. It is useful when writing Lisp programming utilities, like e.g. the top loop or remote

evaluation (Sec. 5.3.2). Avoid using EVAL unless you really need to, as the code executed by EVAL is not known until run-time

and this is very unpredictable and prohibits compilation and program analysis. If possible, use FUNCALL and APPLY instead.

In most other cases macros (Sec. 3.13) replace need for EVAL while at the same time producing compilable and analyzable

programs.

3.10.4. System functions for run-time evaluation

Function Type Description

(APPLY FN ARGL) *MACRO Apply the function FN on the list of arguments ARGL. APPLY is

used to call a function where the argument list is dynamically

constructed with varying arity.

 24

(APPLY FN ARG1…ARGk) *MACRO APPLY with > 2 arguments ARG1…ARGk, k>=2. In this case the

dynamic argument list is constructed by inserting ARG1…ARGk-1

into ARGk, i.e. the dynamic argument list becomes (LIST*

ARG1…ARGk).

(APPLYARRAY FN A) EXTFN Apply the Lisp function FN on the arguments in the array A.

(EVAL FORM) *EXTFN Evaluate FORM. Unlike CommonLisp, the form is evaluated in the

lexical environment of the EVAL call.

(F/L FN ARGS FORM...) MACRO (F/l (X) FORM...) <=> (FUNCTION(LAMBDA(X) FORM...))

is equivalent to the CommonLisp read macro (also supported):

#’(LAMBDA (X) FORM...).

(FUNCALL FN ARG1...) *EXTFN Call function FN with arguments ARG1... FUNCALL is used when

the called function FN is computed at run-time (e.g. bound to a

variable).

(FUNCTION FN) *SPECIAL Make a closure of the function FN. Do not use QUOTE for

functional expressions, as ALisp will then not know that a closure

(Section 3.10.1) should be formed.

3.11. Map functions

Map functions are functions and macros taking other functions as arguments and applying them repeatedly on elements in lists

and other data structures. Map functions provide a general and clean way to iterate in a functional programming style over data

structures. They are often a good alternative to the more conventional iterative statements (Sec. 3.12.3). They are also often a

good alternative to recursive functions as they don’t eat stack as recursive functions do.

The classical map function is MAPCAR. It applies a function on every element of a list and returns a new list formed by the

values of the applications. For example:

> (mapcar (function 1+) '(1 2 3))

(2 3 4)

The function MAPC is similar, but does not return any value. It is useful when the applied function has side effects. For example:

> (mapc (function print) '(1 2 3))

1

2

3

NIL  MAPC always returns NIL

In CommonLisp the basic map functions may take more than one arguments to allow parallel iteration of several lists. For

example:

> (mapcar (function +)

 '(1 2 3) '(10 20 30))

(11 22 33)

Lambda expressions are often useful when iterating using map functions. For example:

> (defun rev2 (a b)

 (let (ra rb)

 (mapc #'(lambda (x y)

 25

 (push x ra)

 (push y rb))

 a b)

 (list ra rb)))

REV2

> (rev2 '(1 2 3) '(a b c))

((3 2 1) (C B A))

The following system map functions are available in ALisp:

Function Type Description

(ISOME L FN) EXTFN FN is function with two arguments X and TAIL. Apply FN on each

element and its tail in list L. If FN returns true for some element in

L then ISOME will return the corresponding tail of L.

For example:
(ISOME ’(1 2 2 3) #’(LAMBDA (X TL)(EQ X (CADR

TL)))) => (2 2 3)

 See also SOME.

(MAPC FN L...) *MACRO Apply FN on each of the elements of the lists L... in parallel.

(MAPCAN FN L...) *MACRO Apply FN on each of the elements of the lists L... in parallel and

NCONC together the results.

(MAPCAR FN L…) *MACRO Apply FN on each of the elements of the lists L... in parallel and

build a list of the results.

(MAPFILTER FILT LST [OP])

 EXTFN If OP=NIL return the subset of the elements for which the filter function

FILT returns true. If OP is specified the result is transformed by applying

OP on each element of the subset. For example:

(MAPFILTER (FUNCTION NUMBERP) ’(A 1 B 2) (F/l

(x)(1+ x))) => (2 3)

 See also SUBSET!

(MAPL FN L...) *MACRO Apply FN on each tail of the lists L...

(SUBSET L FN) EXTFN Return the subset of the list L for which the function FN returns

true.

(EVERY FN L...) *MACRO Return T if FN returns non-nil result when applied on every element

in the lists L... in parallel.

(NOTANY FN L…) *MACRO Apply FN on elements in the lists L... in parallel. Return T if FN

does not return true for any element.

(SOME FN L...) *MACRO Apply FN on elements in the lists L... in parallel. Return T if FN

returns non-NIL value for some element.

3.12. Control Structures

Syntactic sugar and control structures are implemented in Lisp as macros and special functions. This subsection

describes system functions, macros, and special forms.

 26

3.12.1. Compound expressions

The compound functions PROGN, PROG1, and PROG2 are used for forming a single form out of several forms.

This makes sense only if some of the forms have side effects. For example:

> (progn (print "A") "B")

"A"

"B"  Value of PROGN is value of last argument

> (prog1 (print "A") "B")

"A"

"A"  Value of PROG1 is value of first argument

Compond expressions are also implicitly formed by lambda and LET expressions and many control structures described in the

next section.

Function Type Description

(PROG1 X...) *EXTFN Return the value of the first form in X...

(PROG2 X…) *EXTFN Return the value of the second form in X…

(PROGN X...) *EXTFN Return the value of the last form in X...

3.12.2. Conditional expressions

Conditional expressions are special forms that evaluate expressions conditional on the truth value of some condition.

The classical Lisp conditional expression is COND. For example:

> (setq x 1)

1

> (setq y 2)

2

> (setq z nil)

NIL

> (cond (x)

 (t y))

1

1> (cond (z (print "NO"))

 (y (print "YES") 5)

 (t (print "NO")))

"YES"

5

An alternative to COND is (IF PRED THEN ELSE). For example, the COND expression above can also be written:

> (if z (print "NO")

 (if y (progn (print "YES") 5)

 (print "NO")))

"YES"

5

The function PROGN has to be used to form compound expressions inside the IF. Such nested IFs are not recommended as they

make the code difficult to read.

 27

The CASE macro selects forms to evaluate conditional on the value of a test form. For example:

> (case (+ x 1)  The test form

 ((0 2) "YES")  Succeeds if (+ x 1) is either 0 or 2

 (1 "NO")  Succeeds if (+ x 1) is 1

 (otherwise "NO"))  Default case

"YES"  X is 1

The following conditional statements are available in ALisp:

Function Type Description

(CASE TEST (WHEN THEN...)...(OTHERWISE DEFAULT...)

 *MACRO For example:

 (CASE (+ 1 2)(1 ’HEY)((2 3) ’HALLO) (OTHERWISE

’DEFAULT))

=> HALLO

 Evaluate TEST and match the value with each of the WHEN

expressions. For the WHEN expression matching the value, the

corresponding forms THEN... are evaluated, and the last one is

returned as the value of CASE. Atomic WHEN expressions match

if they are EQ to the value, while lists match if the value is member

of the list. If no WHEN expression matches the forms DEFAULT...

are evaluated and returned as the value of CASE. If no

OTHERWISE clause is present the default result is NIL.

(COND (TEST FORM...)...) *SPECIAL Classical Lisp conditional execution of forms.

(IF P A B) *SPECIAL If P then evaluate A else evaluate B.

(SELECTQ TEST (WHEN THEN...)... DEFAULT)

 SPECIAL For example:

 (SELECTQ (+ 1 2)(1 ’HEY)((2 3) ’HALLO) ’DEFAULT) =>

HALLO

Same as

 (CASE TEST (WHEN THEN...)... (OTHERWISE DEFAULT))

(UNLESS TEST FORM…) *MACRO Evaluate FORM… if TEST is false.

(WHEN TEST FORM…) *MACRO Evaluate FORM… if TEST is true.

3.12.3. Iterative statements

As in other programming languages Lisp provides iterative control structures, normally as macros. However, in most cases map

functions (Sec. 3.11) provide the same functionality in a cleaner and often more general way.

Function Type Description

(DO INITS ENDTEST FORM...) *MACRO General CommonLisp iterative control structure [1]. Loop can be

terminated with (RETURN VAL) in addition to the ENDTEST.

(DO* INITS ENDTEST FORM...) *MACRO As DO but the initializations INIT are done in sequence rather than

in parallel.

(DOLIST (X L) FORM...) *MACRO Evaluate the forms FORM... for each element X in list L.

 28

(DOTIMES (I N [RES]) FORM...) *MACRO Evaluate the forms FORM... N times. I varies from 0 to N-1. The

optional form RES returns the result of the iteration. In RES the

variable I is bound to the number of iterations made.

(LOOP FORM...) *MACRO Evaluate the forms FORM... repeatedly. The loop can be

terminated, and the result VAL returned, by calling (RETURN

VAL).

(RETURN VAL) *LAMBDA Return value VAL form the block in which RETURN is called. A

block can be a PROG-LET, PROG-LET*, DOLIST, DOTIMES,

DO, DO*, LOOP or WHILE expression.

(RPTQ N FORM) SPECIAL Evaluate FORM N times. Recommened for timing in combination

with the function TIME.

(WHILE TEST FORM...) MACRO Evaluate the forms FORM... while TEST is true or until RETURN

is called.

3.12.4. Non-local returns

Non-local returns allows to bypass the regular function application order. The classical functions for this are CATCH and

THROW. (CATCH TAG FORM) evaluates TAG to a catcher which must be a symbol. Then FORM is evaluated and if the

function (THROW TAG VALUE) is called with the same catcher then VALUE is returned. If THROW is not called the value of

FORM is returned. For example:

> (defun foo (x)(catch 'foo-catch (fie (+ 1 x))))

FOO

> (defun fie (y)(cond ((= y 2)(throw 'foo-catch -1))

 (t y)))

FIE

> (foo 1)

-1

> (foo 2)

3

A related subject is how to catch errors. In particular UNWIND-PROTECT is the general mechanism to handle any kind of non-

local return and error trapping. This is described in Sec. 6.1.

Function Type Description

(CATCH TAG FORM) *SPECIAL Catch calls to THROW inside FORM matching TAG.

(THROW TAG VAL) *EXTFN Return VAL as the value of a call to CATCH with the catcher TAG

that has called THROW directly or indirectly.

3.13. Macros

Lisp macros provide a way to extend Lisp with new control structures and syntactic sugar. Because programs are represented as

data in Lisp it is particularly simple to make Lisp programs that transform other Lisp programs. Macros provide the hook to make

such code transforming programs available as first class objects. A macro should be seen as a rewrite rule that takes a Lisp

expression as argument and produces another equivalent Lisp expression as result. For example, assume we want to define a new

control structure, FOR, to make for loops, e.g. (for i 2 10 (print i)) prints the natural numbers from 2 to 10. FOR can be defined as

a macro:

> (defmacro for (var from to do)

 29

 (subpair '(_var _from _to _do)  _VAR, _FROM, TO, and _DO are substituted

 (list var from to do)  with these actual values

 '(let ((_var _from))  This is the code skeleton

 (while (<= _var _to)

 _do

 (setq _var (1+ _var))))))

FOR

lisp 1> (for i 2 4 (print i))  Macros expanded by interpreter

2

3

4

NIL  Value of FOR

When defining macros as in the example one normally have a code skeleton in which one replaces elements with actual

arguments. In the example we use SUBAIR to do the substitution. A more convenient CommonLisp facility to define code

skeleton is to use backquote (‘`’), which is a variant of QUOTE where pieces can be marked for evaluation. Using backquote

FOR could also have been written as:

> (defmacro for (var from to do)

 `(let ((, var , from))

 (while (<= , var , to)

 , do

 (setq , var (1+ , var)))))

(FOR REDEFINED)

FOR

> (for i 2 4 (print i))

2

3

4

NIL

The backquote character ‘`’ marks the succeeding expression to be back quoted. In a back quoted expression the character ‘,’

indicates that the next expression is to be evaluated.

Macros can be debugged like any other Lisp code (Sec. 7). In particular it might be interesting to find out how a macro transform

a given call. For this the system function MACROEXPAND can be used, normally in combination with pretty-printing with PPS

(Sec 5). For example:

> (macroexpand '(for i 2 4 (print i)))

((LAMBDA (I) (WHILE (<= I 4) (PRINT I) (SETQ I (1+ I)))) 2)

> (pps (macroexpand '(for i 2 4 (print i))))

((LAMBDA (I)  PPS makes more readable printing of code

 (WHILE

 (<= I 4)

 (PRINT I)

 (SETQ I

 (1+ I))))

 2)

NIL

Notice that macros should not have side effects! They should be side effect free Lisp code that transforms one piece of code to

another equivalent piece of code. For example, it is not unusual to use macros to define functions where arguments are

automatically quoted. For example, (PP FN1….Fn) pretty-prints function definitions and the following expression pretty-prints

the definition of PP itself:

 30

> (pp pp)

(DEFMACRO PP (&REST FNS)

 "Pretty prints function definitions"

 (LIST 'PPF

 (LIST 'QUOTE FNS)))

(PP)

> (macroexpand '(pp pp))  Let’s look at how (PP PP) is rewritten

(PPF (QUOTE (PP)))  The function PPF is a lambda function

MACROs are made very efficient in ALisp because the first time the interpreter encounters a macro call it will modify the code

and replace the original form with the macro-expanded one (just-in-time expansion). Thus a macro is normally evaluated only

once. The definition of a macro is a regular function definition, but each symbol has a special flag indicating that its definition is

a macro.

The following functions are useful when defining macros:

Function Type Description

(BQUOTE X) MACRO BQUOTE implements ALisp’s variant of the CommonLisp read

macro ‘ (back-quote). X is substituted for a new expression where

’,’ (comma) and ’,@’ (at sign) are recognized as special markers. A

comma is replaced with the value of the evaluation of the form

following the comma. The form following an at-sign is evaluated

and ’spliced’ into the list.

For example, after evaluating
(setq a ’(1 2 3))

(setq b ’(3 4 5))

then
‘(a (b ,a ,@ b))

or equivalently
(bquote(a (b , a ,@ b))

both evaluate to
(a (b (1 2 3) 3 4 5))

Very useful for making Lisp macros.

(DEFMACRO NAME ARGS FORM...)

 *SPECIAL Define a new MACRO.

(KWOTE X) EXTFN Make X a quoted form. Good for making Lisp macros.

For example,
(KWOTE T) => T

(KWOTE 1) => 1

(KWOTE ’A) => (QUOTE A)

(KWOTE ’(+ 1 2)) => (QUOTE (+ 1 2))

(KWOTED X) EXTFN Return T if X is a quoted form. For example:
(KWOTED 1) => T

(KWOTED ’(QUOTE (1))) => T

(KWOTED ’(1)) => NIL

(MACRO-FUNCTION FN) *EXTFN Return the function definition of FN if FN is a macro; otherwise

return NIL.

 31

(MACROEXPAND FORM) *EXTFN If FORM is a macro return what it rewrites FORM into; otherwise

FORM is returned unchanged.

(PROGNIFY FORML) LAMBDA Make a single form from a list of forms FORML.

(UNFUNCTION FORM) LAMBDA Get the function definition of a functional expression.

3.14. Defining structures

ALisp includes a subset of the structure definition package of CommonLisp. The structures are implemented in ALisp using fixed

size arrays. You are recommended to use structures instead of lists when defining data structures because of their more efficient

and compact representation.

A new structure S is defined with the macro (DEFSTRUCT S FIELD1...), for example:

> (defstruct person name address)

PERSON

DEFSTRUCT defines a new structure S with fields named FIELD1... pointing to arbitrary objects. DEFSTRUCT generates a

number of macros and functions to create and update instances of the structure.

New instances are created with

(MAKE-S :FIELD1 VALUE1 ...)

for example:

> (setq p (make-person :name "Tore" :address "Uppsala"))

#(PERSON "Tore" "Uppsala")

The fields of a structure are updated and accessed using accessor functions generated for each field:

(S-FIELD S)

for example:

> (person-name p)

"Tore"

Fields are updated by combining SETF with an accessor function:

(SETF (S-FIELD S) VAL)

For example:

> (setf (person-name p) "Kalle")

"Kalle"

> (person-name p)

"Kalle"

An object O can be tested to be a structure of type S using the generated function:

(S-P O)

 32

For example:

> (person-p p)

T

3.15. Miscellaneous functions

Function Type Description

(ADVISE-AROUND FN CODE) LAMBDA Wrap the body of function FN with form CODE where each * is

substituted for the original body of FN. (So called aspect-oriented

programming). CODE must be a single form. The variables of FN

are available in CODE. If the function is an EXTFN the variable

!ARGS is bound in CODE to a list of the actual arguments. To

restore the not-wrapped function definition call (UNWRAP-FN

FN). TRACE, BREAK, PROFILE-FUNCTIONS and many other

packages are based on ADVISE-AROUND, which allows existing

code to be instrumented without changing it.

(CHECKEQUAL TEXT (FORM VALUE)...)

 SPECIAL Regression testing facility. The TEXT is first printed. Then each

FORM is evaluated and its result compared with the value of the

evaluation of the corresponding VALUE. If some evaluation of

some FORM is not EQUAL to the corresponding VALUE an error

notice is printed.

(CLEAR-MEMO-FUNCTION FN) LAMBDA Clears MEMO-FUNCTION cache.

(DECLARE ...) *MACRO Dummy defined in ALisp for compatibility with CommonLisp.

(DECF P V [DECR]) *MACRO Decrease the current value at location P with V (default DECR).

(EVALLOOP) EXTFN Enter the ALisp top loop. Return to caller when function (EXIT) is

called.

(EXIT) EXTFN Return from the ALisp top loop to the program that called it. In a

stand-alone system EXIT is equivalent to QUIT. When ALisp is

called from some other system EXIT will pass the control to the

calling system.

(IDENTITY X) *LAMBDA The identity function.

(INCF P V [INCR]) *MACRO Increase the current value at location P with INCR (default 1).

(MEMO-FUNCTION FN) LAMBDA Make Lisp function FN into a memo function. This means that the

system caches the arguments of FN when it is called so that it does

not execute the function body when it is called repeatedly, to speed

up execution. (CLEAR-MEMO-FUNCTION FN) clears the cache.

Implemented by ADVISE-AROUND. For example:

 (memo-function

 (defun fibonacci (x)

 (if (< x 2) 1 (+ (fibonacci (- x 1))

 (fibonacci (- x 2))))))

(IMAGESIZE SIZE) EXTFN Extend the system’s database image size to SIZE. If SIZE = NIL the

current image size is returned. The image is normally extended

automatically by the system when memory is exhausted. However,

the automatic image expansion may cause a short halting of the

system while the OS is mapping more virtual memory pages. By

using IMAGESIZE these delays can be avoided.

 33

(QUIT) *EXTFN Quit Lisp. If ALisp is embedded in another system it will terminate

as well.

(ROLLOUT FILE) EXTFN Save the ALisp memory area (image) in file FILE. It can be

restored by specifying FILE on the command line the next time

ALisp is started.

(SETF P1 V1 P2 V2 …) *MACRO Update the location Pi to become Vi. A location can be, e.g., a

variable value, a structure element, a property, a hash table index, or

a B-tree index. More than one location can be updated at once. A

location Pi is specified with a particular access function depending

on the kind of desired update: e.g. AREF (updating arrays), GETL

(updating free property lists), GETPROP (updating symbol property

lists), GETHASH (updating hash tables), GET-BTREE (updating

B-trees), or PUSH, POP, CAR…CDDDR, FIRST…TENTH, REST

(updating lists). It can also be a symbol, in which case (SETF X Y)

behaves like (SETQ X Y).

 The user can extend the update rules for SETF by defining new

SETF macros. If a function call (FOO ...) is used for accessing an

updatable location then the SETF update rule is specified by putting

a macro definition on the property list of FOO under the indicator

SETFMETHOD. The SETF macro should have the format

 (LAMBDA (PLACE VAL) ...).

It is executed when (SETF (FOO ...) V) is called and thereby

PLACE is bound to the list (FOO ...) and VAL to V. The SETF

method should return the form to do the desired update.

(STACKTOP SIZE SLACK) EXTFN Change or obtain the size of Lisp’s variable binding stack. SIZE is

the total stack size in stack frames, while SLACK indicates the

number of stack frames that has to remain when an error happens.

The SLACK allows the break loop to work even when stack

overflow happens, as it provides some remaining stack space when

an error happens. The slack should be at least 300 (initial setting)

for the break loop to work. The current setting is obtained as a pair

by passing NIL as arguments. Notice that the SIZE can never be

increased beyond the initial setting assigned when the system is

started up. The initial stack size can be set in C by assigning the

global C variable a_stacksize before the system is initialized.

STACKTOP allows setting a smaller stack size than the initial one

to prevent the system from crashing because of C stack overflow,

which may happen in, e.g., DLLs where the calling system may

have allocated a to small C stack size.

(TYPENAME X) EXTFN Get the name of the datatype of object X.

(UNWRAP-FN FN) LAMBDA Restore the original code for advised functions. See ADVISE-

AROUND.

3.16. Hooks

Hooks are lists of Lisp functions executed at particular states of the system. Currently there is an initialization hook evaluating

forms just after the system has been initialized, and a shutdown hook evaluating forms when the system is terminated.

To register a form to be executed just after the database image has been read call:

(REGISTER-INIT-FORM FORM [WHERE])

 34

The Lisp expression FORM is inserted into a list of forms stored in the global variable AFTER-ROLLIN-FORMS, which are

evaluated by the system just after a database image has been read from the disk. If WHERE=FIRST the form is added in front of

the list; otherwise it is added to the end. For example:

> (register-init-form '(formatl t "Welcome!" t))

OK

To register a form to be evaluated when the system is exited use the system function:

(REGISTER-SHUTDOWN-FORM FORM WHERE)

The Lisp expression FORM is evaluated just before the system is to be exited using (QUIT). The shutdown hook will not be

executed if (EXIT) is called. The global variable SHUTDOWN-FORMS contains a list of the shutdown hook forms. For

example:

> (register-shutdown-form '(formatl t "Goodbye!" t))

OK

The hooks are saved in the database image. For example, given that we have registered to above two hooks we can do the

following:

> (rollout "myimage.dmp")  Save the database image in a file

T

> (quit)

Goodbye!  The shutdown hook is evaluated.

c:\torer>amos2 myimage.dmp  Start Amos II with the saved image

amos2 myimage.dmp

Welcome!  The initialization hook is evaluated.

Amos II Release 7, v7

Amos 1>

4. Time Functions

Time can be represented in ALisp either as absolute time values or relative time values (i.e. differences between time points).

Time values are used for storing time stamps, measuring time intervals, or control system behaviour.

4.1. System clock

The behaviour of the system can be influenced based on time either by i) making the system sleep for time period, or ii) by

running a background timer function at regular time intervals.

Function Type Description

(CLOCK) EXTFN Compute the number of wall clock seconds spent so far during the

run as a floating point number.

(SLEEP SEC) EXTFN The system function SLEEP makes the system sleep for SEC

seconds. It can be interrupted with CTRL-C. SEC is specified as a

real number.

(SET-TIMER FN PERIOD) EXTFN The function function SET-TIMER starts a timer function, which is

a Lisp function called regularly by the system kernel. PERIOD

 35

specified the minimal interval between successive calls to the

function FN. In practice it will not be called that often, depending

on OS scheduling and other activities. The timer function is

terminated if it causes an error signal (Sec. 6). The statistical

profiler (Sec. 7.4.1) is based on a timer function.

4.2. Absolute Time Values

The ALisp datatype TIMEVAL represents time points. A TIMEVAL object has two components, sec and usec,

representing seconds and micro seconds, respecively. A TIMEVAL object is printed as #[TIMEVAL sec usec], e.g.

#[TIMEVAL 2 3].

The following Lisp functions operate on time points:

Function Type Description

(MKTIMEVAL SEC USEC) EXTFN Create a new TIMEVAL object.

(TIMEVALP TVAL) EXTFN Return T if TVAL is a TIMEVAL object, otherwise NIL.

(TIMEVAL-SEC TVAL) EXTFN Return the number of seconds for a given TIMEVAL object.

(TIMEVAL-USEC TVAL) EXTFN Return the number of micro seconds for a given TIMEVAL object.

(GETTIMEOFDAY) EXTFN Return a TIMEVAL representing the wall time from a system call

to C’s gettimeofday. Useful for constructing time stamps.

(TIMEVAL-TO-DATE TVAL) EXTFN Translate a TIMEVAL TVAL into a date. A date is a seven element

array where the first element is the Year, the second Month, the

third Date, the fourth Hour, the Minutes, the Seconds, and the

seventh Micro Seconds. All elements in the array are integers.

(DATE-TO-TIMEVAL D) EXTFN Translates a date D to a TIMEVAL.

4.3. Relative time values

Relative time values are represented by the datatype TIME. It has three components, hour, minute, and second. The

following functions operate on relative times:

Function Type Description

(MKTIME HOUR MINUTE SECOND)

 EXTFN Construct a new TIME object.

(TIMEP TM) EXTFN Return T if TM is a TIME otherwise NIL.

(TIME-HOUR TM) EXTFN Return the number of hours given a TIME TM.

(TIME-MINUTE TM) EXTFN Return the number of minutes given a TIME TM.

(TIME-SECOND TM) EXTFN Return the number of seconds given a TIME TM.

4.4. Relative Date Values

Relative date values are represented by the datatype DATE. It has three components, year, month, and day. The

 36

following functions operate on dates:

Function Type Description

(MKDATE YEAR MONTH DAY) EXTFN Construct a new date.

(DATEP DT) EXTFN Return T if DT is a date otherwise NIL.

(DATE-YEAR DT) EXTFN Return the number of years.

(DATE-MONTH DT) EXTFN Given a date DT, return the number of months given a date DT.

(DATE-DAY DT) EXTFN Return the number of days given a date DT.

5. Input and Output

The I/O system is based on various kinds of streams. A stream is a datatype with certain attributes allowing its instances to be

supplied as argument to the basic Lisp I/O functions, such as PRINT and READ. Examples of streams are: i) file streams (type

STREAM) for terminal/file I/O, ii) text streams (type TEXTSTREAM) for reading and writing into text buffers, and iii) socket

streams (type SOCKET) for communicating with other Amos II/Alisp systems. The storage manager allows the programmer to

define new kinds of stream [2]. A stream argument NIL or T represents standard input or standard output (i.e. the console).

Streams normally have functions providing the following operations:

Open a new stream, e.g. (OPENSTREAM FILE MODE) creates a new file stream.

Print bytes to the stream buffer. For example, (PRINT FORM STR) prints a form to a stream open for output and iterates through

FORM converting encountered data structures to byte strings that are printed to the stream.

Read bytes from the stream buffer. For example, (READ STR) reads of form from a stream open for input and will thereby read

bytes from the stream buffer. Notice that PRINT and READ are compatible so that a printed form will be recreated by READ.

Send the contents of a stream to its destination when (FLUSH STR) is called.

Close the stream, when (CLOSESTREAM STR) is called.

The following functions work on any kind of stream:

Function Type Description

(CLOSESTREAM STR) EXTFN Close stream STR.

DEEP-PRINT GLOBAL (Default T). Normally the contents of fixed size arrays and

structures are printed by PRINT etc. This allows I/O of such

datatypes. However, when _DEEP-PRINT_==NIL the contents of

arrays and structures are not printed. Good when debugging large or

circular structures.

(DRIBBLE FILE) *LAMBDA Log both standard input and output to FILE. The logging stops and

the file is closed by calling (DRIBBLE NIL). Standard input and

 37

output is printed on the console as well. Notice that only the user

interaction with the system is redirected; i.e. printing to standard

output using the basic OS I/O routines (e.g. printf in C) is not

redirected by DRIBBLE. To redirect all standard output use the

function REDIRECT-BASIC-STDOUT.

(FORMATL STR FORM...) LAMBDA This function is a simple replacement of some of the functionality

of FORMAT in CommonLisp [1]. It prints the values of the forms

FORM... on stream STR. A marker T among FORM... indicates a

line feed while the string "~PP" makes the next element pretty-

printed. For example:

 (FORMATL T "One: " 1 “, two: “ 2 T)

prints the line:

One: 1, two: 2

(PPS S STR) LAMBDA Pretty-print expression S.

(PRIN1 S STR) *EXTFN Print the object S in the stream STR with escape characters and

string delimiters inserted so that the object can be read with (READ

STR) later to produce a form EQUAL to S.

(PRINC X STR) *EXTFN Print the object into the stream STR without escape characters and

string delimiters.

(PRINC-CHARCODE X STR) EXTFN Prints character code for number X on stream STR.

(PRINT X STR) *EXTFN (PRIN1 X STR) followed by a line feed.

(READ STR) *EXTFN Read expression from stream STR. IF STR is a string, the system

reads an expression from the string. For example:
(READ "(A B C)") => (A B C)

 See also WITH-TEXTSTREAM.

(READ-BYTES N STR) EXTFN Read N bytes from stream STR as string.

(READ-CHARCODE STR) EXTFN Read one byte from the stream STR and return it as an integer.

(READ-LINE STR [EOLCHAR]) *EXTFN Read the characters up to just before the next end-of-line character

as a string. If EOLCHAR is specified it is used as terminating

character instead of end-of-line.

(READ-TOKEN STR [DELIMS BRKS STRNUM NOSTRINGS])

 EXTFN Read the next token from stream STR.

DELIMS are character used as delimiters between tokens, default:

blank, tab, newline, carriage return.

BRKS are break character, i.e. they become their own tokens,

default “()[]\”’;`,”.

If STRNUM = NIL numbers are parsed into numbers, otherwise no

special treatment of numeric characters.

If NOSTRINGS = NIL the system will interpret strings enclosed

with “ as in Lisp (C, Java, etc), otherwise no special treatment of “.

(REDIRECT-BASIC-STDOUT FILE)

 EXTFN Redirect all standard output to the specified file. In case the system

is run inside another system, e.g. inside a web server, standard

output is often disabled and this function allows logging in a file

instead. To run this function when the system is started, use the ‘-r

file’ option or make an ALisp image where the AFTER-ROLLIN-

FORMS (Section 3.16) redirects standard output.

 38

An alternative is the function DRIBBLE that prints the user

interaction with the ALisp toploop to both a file and the standard

input/output streams.

(SPACES N STR) LAMBDA Print N spaces on the stream STR.

(TERPRI STR) *EXTFN Print a line feed on the stream STR.

(UNREAD-CHARCODE C STR) EXTFN Put character C back into stream STR.

5.1. File I/O

File streams are used for print to and reading from files. Their type name is STREAM. Standard output and standard input are

regarded as file streams represented as nil. A new file stream is opened with

(OPENSTREAM FILENAME MODE)

where MODE can be "r" for reading, "w" for writing, or "a" for appending. For example:

> (setq s (openstream "foo.txt" "w"))

#[STREAM 3396656]

> (print '(hello world 1) s)

(HELLO WORLD 1)

> (closestream s)

#[STREAM 3396656]

> (setq s (openstream "foo.txt" "r"))

#[STREAM 3396800]

> (read s)

(HELLO WORLD 1)

> (closestream s)

#[STREAM 3396800]

>

The following system functions and variables handles file I/O and file streams:

Function Type Description

(DELETE-FILE FILE) *EXTFN Delete the file named FILE. Returns T if successful.

(FILE-EXISTS-P NM) *EXTFN Return T if file named NM exists.

(FILE-LENGTH NM) *EXTFN Return the number of bytes in the file named NM.

(LOAD FILE) *EXTFN Evaluate the forms in the file named FILE.

(OPENSTREAM FILE MODE) EXTFN Open a file stream against an external file. MODE is the Unix file

mode i.e. "r", "w", or "a". As errors can happen during the

processing of a file causing it not to be closed properly, you are

advised to use the macro WITH-OPEN-FILE instead when

possible.

(PP FN...) MACRO Pretty-print the functions and variables FN... on standard output.

Notice that arguments of PP are not quoted. For example:

 (PP PPS PPF).

(PPF L FILE) LAMBDA Pretty-print the functions and variables in L into the specified file.

For example: (PPF ’(PPS PPF) "pps.lsp")

 39

(PRINTL X...) LAMBDA Print the objects X... as a list on standard output.

(TYPE-READER TPE FN) EXTFN Define the lisp function (FN TPE ARGS STREAM) to be a type

reader for objects printed as #[TPE X...]. The type reader is

evaluated by the ALisp reader when the pattern is encountered in an

input stream. TPE is the type tag, ARGS is the list of argument of

the read object (X...), and STREAM is the input stream.

 (WITH-OPEN-FILE (STR FILE [:DIRECTION D]) FORM…)

 *MACRO First the stream STR is opened for reading, writing, or appending of

FILE, then the forms FORM… are evaluated, and finally the stream

is always closed, even if exceptions are raized while evaluating

FORM…. The file is opened for reading if :DIRECTION is omitted

or D = :INPUT. If D = :OUTPUT the file is opened for writing.

Finally, if D = :APPEND it is opened for writing at the end of the

file.

5.2. Text streams

Text streams (datatype TEXTSTREAM) allow the I/O routines to work against dynamically expanded buffers

instead of files. This provides an efficient way to destructively manipulate large strings. Text streams can also store

bit sequences (’blobs’). The following ALisp functions are available for manipulating text streams:

Function Type Description

(MAKETEXTSTREAM SIZE) EXTFN Create a new text stream with an initial buffer size. The system

automatically extends the initial size when necessary.

(TEXTSTREAMPOS TXTSTR) EXTFN Get the position of the read/print cursor in a text stream TXTSTR.

(TEXTSTREAMPOS TXTSTR POS)

 EXTFN Move the cursor to the specified position. This position is also

updated by the regular Lisp I/O routines.

(TEXTSTREAMSTRING TXTSTR)

 EXTFN Retrieve the text stream buffer of TXTSTR as a string. Notice that

this function cannot be used if the buffer contains binary data.

(CLOSESTREAM TXTSTR) EXTFN Reset the cursor to position 0, i.e. same as

(TEXTSTREAMPOS TXTSTR 0).

(WITH-TEXTSTREAM S STR FORM...)

 MACRO Opens a text stream S over the string STR and evaluates the forms

FORM... with S open. The function then closes S and returns the

result of the evaluation of the last S-expression. For example,

 (WITH-TEXTSTREAM S “(A)(B)” (READ S)(READ S))

 => (B)

5.3. Sockets

ALisp servers can communicate via TCP sockets. Essentially socket streams are abstracted as conventional I/O streams where the

usual ALisp I/O functions work. The ALisp functions PRINT and READ are thus used for sending forms between ALisp

systems.

 40

5.3.1. Point to point communication

With point-to-point communication two ALisp servers can communicate via sockets by establishing direct TCP/IP socket

connections. The first thing to do is to identify the TCP host on which an ALisp system is running by calling:

 (GETHOSTNAME)

Server side:

The first step on the server (receiving) side is to open a socket listening for establishments of incoming connections. Two calls

are needed on the server side:

A new socket object must be created which is going to accept on some port registrations of new socket connections from clients.

This is done with

(OPEN-SOCKET NIL PORTNO)

For example:

 > (open-socket nil 1235)

 #[socket NIL 1235 1936]

OPEN-SOCKET returns a new socket object that will listen on TCP port PORTNO. If PORTNO==0 it means that the

OS assigns a free port for incoming messages. If the OS assigns the port number of socket S can be obtained with the

function:

 (SOCKET-PORTNO S)

Then the server must then wait for clients to request connections by calling:

 (ACCEPT-SOCKET S [TIMEOUT])

ACCEPT-SOCKET waits for the next OPEN-SOCKET call to the server to establish a new connection. If TIMEOUT

is omitted the waiting is forever (it can be interrupted with CTRL-C), otherwise it specifies a time-out in seconds. If an

incoming connection request is received, ACCEPT returns a new socket stream to use for communication with the

client issuing the OPEN-SOCKET request. ACCEPT-SOCKET returns NIL if no OPEN-SOCKET request was

received within the time-out period.

Client side:

On the client side a call to

(OPEN-SOCKET HOSTNAME PORTNO)

opens a socket stream to the server listening on port number PORTNO on host HOSTNAME. HOSTNAME must not be NIL

(which would indicate aserver connection socket). The result of OPEN-SOCKET is a SOCKET object, which is a regular ALisp

I/O stream that can be used by any I/O function. Thus, once OPEN-SOCKET is called the regular Lisp I/O functions can be used

for communication. A SOCKET stream behaves like any other I/O stream.

Notice that data is not sent on a socket stream before calling the function:

(FLUSH S)

To check whether there is something to read on a socket use:

 41

(POLL-SOCKET S TIMEOUT)

POLL-SOCKET returns T if something arrived on socket stream S within TIMEOUT seconds, and NIL otherwise. Polling can be

interrupted with CTRL-C.

When a client has finished using a socket it can be closed and deallocated with:

 (CLOSE-SOCKET S)

Notice that all pending data is lost when CLOSE-SOCKET is called. The garbage collector automatically calls CLOSE-SOCKET

when a socket object is deallocated.

5.3.2. Remote evaluation

There is also a higher level remote evaluation mechanisms where system can be set up as a server evaluating incoming Lisp

forms from other Amos II peers. With remote evaluation Lisp forms are sent from one peer to another for evaluation there after

which the result is shipped back to the caller. The remote evaluation requires the receiving peer to listen for incoming forms to be

evaluated. The remote evaluation mechanism requires ALisp to run inside Amos II as a subsystem.

Server side:

On the server side the following makes an Amos II peer behave as a remote evaluation server, accepting incoming forms to

evaluate remotely.

An Amos II name server must be started on some host. The name server is an Amos II peer that keeps track of what peers listen

to what ports for remote evaluation (see 1). To start a name server run on the desired host, execute the shell command:

 amos2 -n

The peer needs to be registered in the Amos II name server used by the peer under some name NAME. This is done with:

 (REGISTER-AMOS NAME [REREGISTER])

For example:

(REGISTER-AMOS "ME")

The NAME is a short nick name for the peer. The name server keeps track of the nick names of the peers and makes

sure that no name collisions occur. REREGISTER==T means that the system should reregister NAME for this peer

even if another peer is registered with the same nick name.

The OS environment variable AMOS-NAMESERVERHOST should be set to the IP host name of the computer where the name

server is running. Default is the same host as the peer.

The remote evaluation server must be listening for incoming remote evaluation requests on the port on which it has been assigned

for that purpose. This is done with:

(RUN-SERVER)

After RUN-SERVER is called the peer enters a remote evaluation server loop. The loop continues forever, or until

interrupted with CTRL-C. If an error occurs during the remote evaluation the default behaviour is that the error

 42

message is shipped back to the caller. However, if the server is in debug mode (Sec . 7.1) server errors will be trapped

there.

Client side:

On the client side, to ship a FORM for evaluation on an Amos II peer with nick name PEER, simply call:

(REMOTE-EVAL FORM PEER)

The result of the remote evaluation is shipped back to REMOTE-EVAL. REMOTE-EVAL blocks until the result is received.

Errors occurring on server are shipped back to client.

For non-blocking messages use instead:

(SEND-FORM FORM PEER)

The difference to REMOTE-EVAL is that FORM is evaluated on PEER on its own; the client does not wait for the result and is

thus non-blocking. Errors are NOT sent back. SEND-FORM is faster than REMOTE-EVAL, in particular when the messages are

large. If you want to synchronize after many non-blocking messages sent with SEND-FORM, end with a REMOTE-EVAL. For

example, the following form will return the number 1000, assuming that an Amos II peer named FOO is running:

 (progn (send-form '(setq xx 0) 'foo)

 (dotimes (i 10000)(send-form '(1++ xx) 'foo))

 (remote-eval 'xx 'foo))

6. Error handling

When the system detects an error it will call the Lisp function:

 (FAULTEVAL ERRNO MSG O FORM FRAME)

where

ERRNO is an error number (-1 for not numbered errors)

MSG is an error message

O is the failing Lisp object

FORM is the last Lisp form evaluated when the error was detected.

FRAME is the variable stack frame where the error occurred.

The ALisp default behaviour of FAULTEVAL first prints the error message and then calls the function (RESET) to signal an

error to the system, an error signal. To reset Lisp means to jump to a pre-specified reset point of the system. By default this reset

point is the top level read-eval-print loop. It can also be a unwind protection to be explained next.

6.1. Trapping exceptions

The special form UNWIND-PROTECT enables trapping error signals and clean up after error signals.

(UNWIND-PROTECT FORM CLEANUP)

The FORM is evaluated as usual until it is terminated, whether naturally or by means of a regular exit or an error signal. The

cleanup form CLEANUP is then evaluated before control is handed back. Note that the cleanup form of an UNWIND-PROTECT

 43

is not protected by that UNWIND-PROTECT so errors produced during evaluation of CL can cause problems. The solution is to

nest UNWIND-PROTECT. The function (HARDRESET) bypasses UNWIND-PROTECT and directly resets the system.

UNWIND-PROTECT traps any local or non-local exit, including error signals and THROW (Sec 3.12). For example, a throw

form may cause a catcher to be exited leaving a file open. This is clearly undesirable, so a mechanism is needed to close the file

and do any other essential cleaning up on termination of a construct, no matter how or when the termination is caused.

UNWIND-PROTECT can be used to achieve this.

It is possible to trap all errors raised during the evaluation of a form by using the macro (CATCH-ERROR FORM REPAIR). It

evaluates FORM and returns the result of the evaluation, if successful. Should an error occur during the evaluation of FORM,

then REPAIR is evaluated if supplied and an error condition is returned which looks like:

(:ERRCOND (ERRNO "errmsg" X))

For example:

> (catch-error a)

(:ERRCOND (1 "Unbound variable" A))

The function (ERROR? X) tests if X is an error condition. It can be used for testing if CATCH-ERROR returned an error

condition. The functions ERRCOND-ARG (the object causing the error), ERRCOND-NUMBER (the error number), and

ERRCOND-MSG (the error message) are used for accessing error condition properties. The form REPAIR is evaluated if an

error is raised. In REPAIR the variable _ERROR-CONDITION_ is bound to the error condition.

6.2. Raising errors

The function (ERROR MSG X) print and error message MSG and raises an error for X. The error number is always -1 (user

error).

To cause an error signal without any error message call (RESET).

As any other error these functions will go through the regular error management mechanisms. User errors can be caught with

UNWIND-PROTECT or CATCH-ERROR.

6.3. User interrupts

After an interrupt is generated (e.g. CTRL-C) the system calls the Lisp function

 (CATCHINTERRUPT)

By default CATCHITERRUPT resets Lisp. In debug mode a break loop is entered when CTRL-C is typed.

For disable (delay) CTRL-C during evaluation of a FORM, use:

(DOUNITERRUPTED FORM)

 44

6.4. Error management functions

Below follows short descriptions of system functions and variables for error management.

Function Type Description

(CATCH-ERROR FORM CLEANUP)

 MACRO Trap and repair errors. CLEANUP is optional.

(CATCHDEMON LOC VAL) LAMBDA See SETDEMON.

(CATCHINTERRUPT) LAMBDA This system function is called whenever the user hits CTRL-C.

Different actions will be taken depending on the state of the system.

(DOUNITERRUPTED FORM) MACRO Delays interrupts happening during the evaluation of FORM until

DOUNITERRUPTED is exited.

(ERRCOND-ARG EC) LAMBDA Get the argument of an error condition.

(ERRCOND-MSG EC) LAMBDA Get the error message of an error condition.

(ERRCOND-NUMBER EC) LAMBDA Get the error number of an error condition.

(ERROR MSG X) EXTFN Print message MSG followed by ’: ’ and X and then generates an

error.

(ERROR? X) LAMBDA True if X is an error condition.

(FAULTEVAL ERRNO ERRMSG X FORM ENV)

 LAMBDA FAULTEVAL is called whenever the system detects an error. If the

system runs in debug mode FAULTEVAL then enters a break loop

(Sec. 7.1). If the system is not in debug mode FAULTEVAL prints

the error message and calls (RESET).

(FRAMENO) EXTFN Return the frame number of the top frame of the stack.

(HARDRESET) EXTFN Does a ’hard’ reset ignoring UNWIND-PROTECT. Called after

fatal errors such as stack overflow.

(RESET) EXTFN Signals an error. The control is returned to the latest reset point. The

reset point is either the ALisp top loop or the latest call to

UNWIND-PROTECT.

(UNWIND-PROTECT FORM CL) *SPECIAL UNWIND-PROTECT enables the user to clean up after a local or

non-local exit.

7. Lisp Debugging

This section documents the debugging and profiling facilities of ALisp.

To enable run time debugging of ALisp programs the system should be put in debug mode. This is automatically

done when entering the ALisp top loop. To enable Lisp debugging also in the AmosQL top loop call (DEBUGGING

T). To disable debugging in the ALisp top loop call (DEBUGGING NIL). In debug mode the system checks

assertions at run time and analyses Lisp function definitions for semantic errors, and thus runs slightly slower. Also,

in debug mode the system will enter a break loop when an error occurs instead of resetting Lisp, as described next.

The interactive break loop for debugging is difficult or even impossible if you are using the system in a batch

environment or an environment where an interactive break loop cannot be entered (e.g. under PHP). For debugging

in batch environments set the global variable _BATCH_ to true: (SETQ _BATCH_ T)

When _BATCH_ is set and the system is in debug mode errors are trapped and cause a backtrace to be printed

 45

printed after which the error is thrown without entering the break loop.

7.1. The break loop

The break loop is a Lisp READ-EVAL-PRINT loop where some special debugging commands are available. This

happens either when i) the user has explicitly specified a break point for debugging specific broken functions, ii)

explicit break points are introduced in the code by calling HELP, or ii) when an error happens in debug mode. For

example:

> (defun foo (x) (fie x))

FOO

> (defun fie (y) x)

Undeclared free variable X in FIE  Warning.

FIE

> (foo 1)

Error 1, Unbound variable: X  Run time error.

When evaluating: X

(FAULTEVAL BROKEN)  System error break point.

In FIE brk>:bt  Make backtrace.

FIE

FOO

(FAULTEVAL BROKEN)

In FIE brk>:btv  Make more detailed backtrace.

10:_ENV_ <-> 3

9:_ERRFORM_ <-> X

8:_ERROBJ_ <-> X

7:_ERRMSG_ <-> "Unbound variable"

6:_ERRNO_ <-> 1

5:--- (LAMBDA (_ERRNO_ _ERRMSG_ ...) "This function is called by system whenever

error detected" ...) --- @ 3

4:Y <-> 1

3:--- FIE --- @ 0

2:X <-> 1

1:--- FOO --- @ 0

0:--- *BOTTOM* --- @ 0

(FAULTEVAL BROKEN)

In FIE brk>y  Investigate variable y in FIE scope

1

(FAULTEVAL BROKEN)

In FIE brk>:r  Reset Lisp

14.343 s

>

In the break loop the following break commands are available:

:help Print summary of available debugging commands, i.e. this list.

?= Print variables bound by current frame

:lvars Names of local variables bound at current frame.

:fp Print file position of function at current frame.

 46

:ub Unbreak the function at current frame.

:bt Print a backtrace of functions at current frame. The depth of the backtraces is controlled by the special

variable *BACKTRACE-DEPTH* that tells how many function frames should be printed. Its default is 10.

:btv Print a detailed backtrace of the frames below the current frame.

:btv* Print a long backtrace including all stack contents. To print the complete variable binding stack use the

function (DUMPSTACK FRAME) that print everything pushed on the stack starting at frame number

FRAME.

:eval Evaluate current frame.

!value Lisp variable bound to value of evaluating current frame with :eval. Its value is !UNEVALUATED if :eval

has not yet been called. It cannot be reset by SETQ.

(return x) Return value x from the broken frame, i.e. the frame where the break loop was entered.

:c Continue evaluation from broken frame where the break loop was entered. The value of variable !VALUE

is used as return value from the break loop if :eval has been called beforehand.

:r Reset to ALisp top loop.

:a Change current frame to the previous broken frame or reset if there is no previous broken frame.

(:f FN) Set current frame to first frame down the stack calling FN.

:nx Set new current frame one step up the stack.

:pr Set new current frame one step down the stack.

(:arg N) Function that returns N:th argument in current frame.

(:b VAR) Enter new break loop when VAR becomes bound.

The variables bound in the current frame are inspectable in the break loop, because variables in a break loop are evaluated in the

lexical environment of the current frame.

It is possible to explicitly insert a break loop around any Lisp form in a program by using the macro:

 (HELP TAG)

When HELP is called a break loop is entered where the user can investigate the environment with the usual break commands.

The local variables in the environment where HELP was called are also available. The TAG is printed to identify the occurrence

of the HELP call. Very good for debugging complex Lisp functions.

7.2. Breaking functions

Explicit break points can be put on the entry to and exit from Lisp functions by the Lisp macro

 (BREAK fn...)

For example:

> (break foo fie)  Put break point on FOO and FIE

(FOO FIE)

lisp 1> (foo 1)

(FOO BROKEN)  In break point of FOO

In FOO brk>?=  Print parameters of FOO and their values

 47

(X=1)

(FOO BROKEN)

In FOO brk>:eval  Evaluate the body of FOO

(FIE BROKEN)  The broken function is FIE

In FIE brk>?=  The focused function is also FIE

(Y=1)

(FIE BROKEN)

In FIE brk>y  Evaluate variable Y in scope of FIE

1

In FIE brk>(:f foo)  Move down the stack to FOO

2:X <-> 1

1:--- FOO --- @ 0

(FIE BROKEN)

In FOO brk>x  The focused function is FOO

1

(FIE BROKEN)

In FOO brk>:org  Move back to broken function

63:Y <-> 1

62:--- FIE --- @ 0

(FIE BROKEN)

In FIE brk>:args  Look at arguments of broken function

(Y)

(FIE BROKEN)

In FIE brk>:r  Reset Lisp

>

When such a broken function is called the system will also enter a break loop where the above break commands are available.

Breaks on macros mean testing how they are expanded. If you break an EXTFN the argument list is in the variable !ARGS.

The break points on functions can be removed with:

 (UNBREAK FN...)

For example:

 (UNBREAK FOO FIE)

To remove all current function breaks do:

 (UNBREAK)

7.2.1. Conditional break points

ALisp also permits conditional break points where the break loop is entered only when certain conditions are fulfilled. A

conditional break point on a function FN is specified by pairing FN with a precondition function, PRECOND:

 (BREAK ...(FN PRECOND) ...)

When FN is called PRECOND is first called with the same parameters. If PRECOND returns NIL no break loop is entered,

otherwise it is.

For example:

 48

 (BREAK (+ FLOATP))

 (BREAK (CREATETYPE (LAMBDA (TP)(EQ TP ’PERSON))))

Then no break loop is entered by the call:

 (+ 1 2 3)

However, this calls enters a break loop:

 (+ 1.1 2 3)

7.3. Tracing functions

It is possible to trace Lisp functions FN... with the macro:

 (TRACE FN...)

When such a traced function is called the system will print its arguments on entry and its result on exit. The tracing is indented to

clarify nested calls.

Macros and special functions can also be traced or broken to inspect that they expand correctly.

Remove function traces with:

 (UNTRACE FN...)

To remove all currently active traces do:

 (UNTRACE)

Analogous to conditional break points, conditional tracing is supported by replacing a function name FN in TRACE with a pair

of functions (FN PRECOND), for example:

> (trace (+ floatp))

(+)

> (+ 1 2)

3

> (+ 1.1 2)

--> + (!ARGS=(1.1 2))

<-- + = 3.1

3.1

> (+ 1 2.1)

3.1

>

7.4. Profiling

There are two ways to profile ALisp programs for identifying performance problems:

• The statistical profiler is the easiest way to find performance bottlenecks. It works by collecting statistics on

what ALisp functions were executing at periodic sampled time points. It produces a ranking of the most

commonly called ALisp functions. The statistical profiler has the advantage not to disturb the execution

significantly, at the expense of not being completely exact.

 49

• The wrapping profiler is useful when one wants to measure how much wall time is spent inside a particular

function. By the function profiler the user can dynamically wrap Lisp functions with code to collect statistics on

how much time is spent inside particular functions. The wrapping profiler is useful to exactly measure how much

time is spent in specific functions. Notice that the wrapping makes the instrumented function run slower so the

wrapping profiler can slow down the system significantly if the wrapped function does not use much time per

call.

7.4.1. The Statistical Profiler

The statistical profiler is turned on by:

 (START-PROFILE)

After this the system will start a background timer process that regularly (default every millisecond) update statistics on what

code was executing at that time. After starting the statistical profiler you simply run the program you wish to profile.

When the statistics is collected, the percentage most called ALisp functions is printed with:

 (PROFILE)

You may collect more statistics to get better statistics by re-running the program and then call PROFILE again.

Statistical profiling is turned off with:

 (STOP-PROFILE)

STOP-PROFILE also clears the table of call statistics.

For example;

> (start-profile)

STAT-FUNCTION

> (defun fib (x)

 (if (< x 2) 1 (+ (fib (- x 1))(fib (- x 2)))))

FIB

> (fib 30)

1346269

 > (profile)

(120 (FIB . 99.1) (DEFUN . 0.8))

> (stop-profile)

The function PROFILE returns a list where the first element is the number of samples and the rest lists the percentage spent in

each function. Profile takes as argument an optional cut-off percentage. For example:

> (profile 1)

(120 (FIB . 99.1))

>

The sampling frequency is controlled with the global variable _PROFILER-FREQUENCY_. It is by default set to 0.001 meaning

that up to 1000 samples are made per second. In practice the actual number of samples can be smaller.

The sampling is also influenced by the value of the global variable _EXCLUDE-PROFILE_ containing a list of functions

excluded from sampling. The sampler registers the first call on the execution stack not in this list. For advanced profiling it is

 50

sometimes useful to exclude the most commonly called functions by adding more functions to _EXCLUDE-PROFILE_.

7.4.2. The Wrapping Profiler

To collect statistics on how much real time is spent in specific ALisp functions and how many times they are called use the

wrapping profiler:

 (PROFILE-FUNCTIONS FN...)

For example:

 (PROFILE-FUNCTIONS SUBSET GETFUNCTION)

The calling statistics for the profiled functions are printed (optionally into a file) with:

 (PRINT-FUNCTION-PROFILES [FILE])

The calling statistics are cleared with:

 (CLEAR-FUNCTION-PROFILES)

Function profiling can be removed from specific functions with:

 (UNPROFILE-FUNCTIONS FN...)

To remove all function profiles do:

 (UNPROFILE-FUNCTIONS)

Analogously to conditional break points, conditional function profiling is supported by specifying pairs (FN PRECOND) as

arguments to PROFILE-FUNCTIONS, e.g.

 (PROFILE-FUNCTIONS (CREATETYPE (LAMBDA(X)(EQ X ’PERSON))))

The function profiler does not double measure recursive functions calls. When a functions call causes error throws it is not

measured.

7.5. System functions for debugging

We conclude this chapter with a list of all ALisp system functions useful for debugging:

Function Type Description

(BACKTRACE DEPTH FRAME FILTERED)

 EXTFN Print a backtrace of the contents of the current variable binding

stack. DEPTH indicates how many function frames are printed. If

FILTERED is true then arguments of EXTFNs are excluded from

the backtrace. FRAME indicates at what stack frame number the

backtrace shall start. Default is top of stack.

BATCH GLOBAL If this variable is true no break loop is entered after errors are

detected. Instead the system make a backtrace (command :btv Sec.

7.1) and resets the system. Useful when running in batch or in

 51

servers.

(BREAK FN...) MACRO Put break points on entries to Lisp functions FN... so that an

interactive break loop is entered when any of the broken functions

are called (Sec. 7.1).

(CLEAR-FUNCTION-PROFILES) LAMBDA Clear the statistics for wrapping profiling (Sec. 7.4.2).

(DEBUGGING FLAG) EXTFN If FLAG is true the system will start running in debug mode, where

warning messages are printed and the system checks assertions.

Turn off debug mode by calling with FLAG false. Notice that the

system by default is in debug mode when the ALisp top loop is

entered, but can be turned on by calling (DEBUGGING NIL).

(DUMPSTACK [FRAME]) EXTFN Print all the contents of the variable binding stack. If FRAME is

provided it specifies the starting stack frame number; otherwise the

printing starts at the current top of the stack.

(HELP TAG) MACRO To insert explicit break points in Lisp code. The TAG indentifies

the HELP call. For example: (HELP “FOO”)

(IMAGE-EXPANSION RATE MOVE) EXTFN When the database image if full it is dynamically expanded by the

system. This function controls the expansion. RATE is how much

the image is to be expanded (default 1.25). If MOVE is true the

image will always be copied to a different place in memory after

image expansion. If MOVE is false it may or may not be copied. To

test system problems related to the moving of the image the

following call will make the image move a lot when data is loaded:
(IMAGE-EXPANSION 1.0001 T)

(LOC X) EXTFN Return the location (handle) of Lisp object X as an integer. The

inverse is (VAG X).

(PRINT-FUNCTION-PROFILES FILE)

 LAMBDA Print statistics on time spent in profiled functions (Sec 7.4.2). FILE

is optional.

(PRINTFRAME FRAMENO) EXTFN Print the variable stack frame numbered FRAMENO.

(PRINTSTAT) EXTFN Print storage usage since the last time PRINTSTAT was called.

Good for tracing storage leaks and usage.

(PROFILE) LAMBDA Print statistics of time spent in ALisp functions after a statistical

profiling execution (Sec 7.4.1).

(PROFILE-FUNCTIONS FN...) MACRO Wrap the ALisp functions FN... with code to collect statistics on

how much real time was spend inside them (Sec. 7.4.2).

(REFCNT X) EXTFN Return the reference count of X. For debugging of storage leaks.

(SETDEMON LOC VAL) EXTFN Set up a system trap so that when the word at image memory

location LOC becomes equal to the integer VAL the system will

call the Lisp function (CATCHDEMON LOC VAL) which by

default is defined to enter a break loop. The trap is immediately

turned off when the condition is detected, or when a regular

interrupt occurs. Very useful for detecting memory corruption in C-

code interfaced to the system. See also [2].

(START-PROFILE) LAMBDA Start statistical profiling of a Lisp program. (Sec. 7.4.1)

(STOP-PROFILE) LAMBDA Stop profiling the ALisp program. (Sec. 7.4.1)

(STORAGESTAT FLAG) LAMBDA If FLAG is true the top loop prints how much data was allocated

and deallocated for every evaluated Lisp form in the ALisp top loop

(or AmosQL statement in the AmosQL top loop). Very useful for

finding storage leaks.

(STORAGE-USED FORM TAG) SPECIAL Evaluate FORM and print a report on how many data objects of

different types were allocated by the evaluation. TAG is an optional

 52

title for the report. Good for finding storage leaks.

(TIME FORM) *MACRO Print the real time spent evaluating FORM. Returns value of

FORM. Often used in combination with RPTQ (Sec. 3.12).

(TRACE FN...) MACRO Put a trace on the functions FN... (Sec 7.3). The arguments and the

values will then be printed when any of these functions are called.

Remove the tracing with UNTRACE.

(TRACEALL FLG) EXTFN Trace all function calls if FLG is true. The massive tracing is turned

off with (TRACEALL NIL).

(TRAPDEALLOC X) EXTFN Set up a demon so that the break loop is entered when the object X

is deallocated. Good for finding out where objects are deallocated

by the garbage collector.

(UNBREAK FN...) MACRO Remove the break points around the specified functions (Sec. 7.2).

(UNPROFILE-FUNCTIONS FN...) MACRO Remove function profiles from the specified functions (Sec. 7.4.2).

(VAG X) EXTFN Return the ALisp object at image location X. The inverse is (LOC

X).

(VIRGINFN FN) LAMBDA Get the original definition of the function associated with the

symbol FN, even if FN is traced or broken.

8. Code search and analysis

As Lisp code is also data it is stored in the internal database image. A number of system functions are available for searching and

analyzing Lisp code in the image. This can be used for finding functions, printing function documentation, cross-referencing

functions, analysing correctness of functions, etc.

8.1. Emacs subsystem

ALisp can run as a subprocess to Emacs or XEmacs. The most convenient way to develop Alisp code is to run from a shell within

XEmacs. Emacs should be configured using the file init.el. It provides extensions to Emacs for finding Lisp code and for

evaluating Lisp by ALisp. Place init.el in the initialization folder of Emacs (on Linux the file /home/.emacs) or XEmacs

(under Windows in %userprofile%\.Xemacs\init.lsp).

When Emacs is started give the command:

M-x-shell

This will start a new Windows (or Unix) shell inside Emacs. You can there give the usual Windows (Unix) commands.

First check that the Emacs init file was loaded correctly by typing F1. If it was loaded correctly there should be a message:

Error: ‘’ is not a file

When Emacs initializes OK, run Amos II in the Emacs shell by issuing the command:

 amos2

If you are developing Lisp code, enter to the ALisp top loop the command:

lisp;

 53

8.2. Finding source code

The system contains many Lisp functions and it may be difficult to find their source code. To alleviate this, there are Lisp code

search functions for locating the source codes of Lisp functions and macros loaded in the database image having certain

properties. Most code search functions print their results as file positions consisting of file names followed by the line number of

the source for the searched function. Only source code of LAMBDA functions and macros has file positions.

If Emacs is configured properly, the Emacs key F1 (defined in init.el) can be used for jumping to the source code of a file

location at the mouse pointer. For example, the function (FP FN) prints the file position of a function:

> (fp 'printl)

PRINTL C:/AmosNT/lsp/orginit.lsp 530

T

If you place the pointer over the file name and press F1 you should be placed in a separate Emacs window at the file position

where the function PRINTL is defined. If F1 is undefined you have not installed init.el properly.

If you have edited a function with Emacs it can be redefined in ALisp by cut-and-paste. The key F2 will send the form starting at

the pointer position in the file source window to the shell window for evaluation.

If you don’t have the source code you can still look at the definition of PRINTL using PP:

> (pp printl)

(DEFUN PRINTL (&REST L)

 "Print list of arguments on standard output"

 (PRINT L))

(PRINTL)

PP prints the definitions of functions from their internal representation in the database image. The appearance in the source file is

normally more informative, e.g. including comment lines and with no macros expanded.

Often you vaguely know the name of a function you are looking for. To search for a function where you only know a part of its

name use the CommonLisp function (APROPOS FN). For example:

> (apropos 'ddd)

CADDDR C:/AmosNT/lsp/orginit.lsp 47

 ""

CDDDDR C:/AmosNT/lsp/orginit.lsp 45

 ""

CDDDR

 EXTFN

Here we see that the function CDDDR is an external function with no source code. We can inspect its definition and see that it is

an EXTFN with:

> (pp cdddr)

(DEFC 'CDDDR #[EXTFN1 CDDDR])

(CDDDR)

APROPOS prints the documentation of LAMBDA functions and macros. For example:

> (apropos 'printl)

PRINTL C:/AmosNT/lsp/orginit.lsp 530

 54

 "Print list of arguments on standard output"

NIL

The documentation of a function should be given as a string directly after the formal parameter list, as for PRINTL.

To find where a structure is defined you can search for its construction. For example:

> (apropos 'make-selectbody)

MAKE-SELECTBODY C:/AmosNT/lsp/function.lsp 46

 ""

Function Type Description

(DOC FN) LAMBDA Return the documentation string for a function.

(FP FUNCTION) LAMBDA Print the file position of a function definition. The file position of

the currently focused function in the break loop is printed with the

command:

 :fp

(GREP STRING) LAMBDA Print the lines matching the string in all source files currently

loaded in the database image. This can be slow.

(CALLING FN [LEVELS] [FILE]) LAMBDA Print the file positions for the functions calling the function FN.

LEVELS specifies how many levels of functions that call FN

indirectly are printed (default 1). FILE prints to a file.

(CALLS FN [LEVELS] [FILE])

 LAMBDA Print the file positions for the functions called from function FN.

LEVELS specifies how many levels of functions that are called

indirectly by FN are printed (default 1). FILE prints to a file.

(USING S) LAMBDA Print the file positions for the functions whose definitions contain

the symbol S. S is usually a variable name.

(MATCHING PAT) LAMBDA Print the file positions of functions whose definitions match

somewhere the code pattern PAT. A pattern is an S-expression

where the symbol * matches everything,. For example:
(MATCHING '(map* '* . *))

matches functions containing, e.g., the form

(mapcar 'print l).

8.3. Code verification

ALisp has a subsystem for verifying Lisp code. The code verification goes through function definitions to search for code

patterns that are seem errorneous. It also looks for calls to undefined functions, undefined variables, etc. The code verifier is

automatically enabled incrementally when in debug mode. However, full code verification requires that all functions in the image

are analyzed, e.g. to verify that all called functions are also defined. To verify fully all functions in the image, call:

(VERIFY-ALL).

It goes through all code and prints a report when something incorrect is found. For example:

> (verify-all)

NIL  All Lisp functions in image OK

3.75 s

 55

> (defun foo (x)(fie x))

FOO

> (verify-all)

Call to undefined function FIE in FOO.  FOO was not OK

NIL

3.75 s

References

1 Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore Risch, and Martin Sköld:

Amos II Release 11 User's Manual,

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

2 Tore Risch: AStorage – a main memory storage manager, UDBL, Dept. of Information Technology,

Uppsala University, http://user.it.uu.se/~torer/publ/aStorage.pdf, 2009

3 T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Distributed Mediator System

in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis (eds.): Functional Approach to Data Management

- Modeling, Analyzing and Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003,

http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf.

4 Guy L.Steele Jr.: Common LISP, the language, Digital Press,

http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html
http://user.it.uu.se/~torer/publ/aStorage.pdf
http://user.it.uu.se/~torer/publ/FuncMedPaper.pdf
http://www.cs.cmu.edu/Groups/AI/html/cltl/cltl2.html

 56

Index
- 16

!ARGS... 47

* 16

BACKTRACE-DEPTH. 46

/ 16

:ERRCOND .. 43

:osql ... 5

BATCH ... 50

DEEP-PRINT .. 36

ERROR-CONDITION 43

EXCLUDE-PROFILE 49

PROFILER-FREQUENCY 49

+ 16

< 17

<= .. 17

= 17

> 17

>= .. 17

1- 16

1-- .. 16

1+ .. 16

1++ .. 16

a_stacksize .. 33

absolute time values 34

ACCEPT-SOCKET 40

accessor functions 31

ACOS .. 16

ADDPROP .. 10

ADJOIN .. 11

Adjustable arrays 18

ADJUST-ARRAY 18, 19

ADVISE-AROUND 32

AFTER-ROLLIN-FORMS 34

AMOS-NAMESERVERHOST 41

analyze code .. 52

AND .. 17

ANDIFY ... 11

APPEND ... 11

APPEND2 ... 11

APPLY .. 23

APPLYARRAY .. 24

APROPOS... 53

arc cosine .. 16

arc sine .. 16

arc tangent ... 16

AREF .. 19

arguments of broken function 47

array element .. 18

array dimensionality.................................. 18

ARRAYP .. 19

ARRAYTOLIST 19

ARRAY-TOTAL-SIZE 19

ASIN ... 16

aspect-oriented programming 32

ASSOC .. 11

association list ... 11

ASSQ .. 11

ATAN ... 16

atom... 12

ATOM ... 11

ATTACH .. 14

backquote .. 29

backtrace ... 45

BACKTRACE .. 50

batch mode .. 44

binary tree ... 11

BOUNDP .. 9

BQUOTE .. 30

BREAK ... 46, 47, 51

break commands 45

break loop............................ 5, 33, 44, 45, 47

break point .. 45, 46

break point on external Lisp function 47

break point on function 46

break point on macro 47

broken function 45, 47

B-trees ... 20

BUILDL .. 11

BUILDN ... 11

BUTLAST... 11

CAAAR... 11

CAADR... 11

CAAR ... 11

CADAR... 11

CADDR... 11

CADR ... 11

call with variable arity 22

CALLING ... 54

CALLS .. 54

CAR .. 11, 12

 57

CASE .. 27

CATCH ... 28

CATCHDEMON 44

catcher ... 28

CATCH-ERROR 43, 44

CATCHINTERRUPT 43, 44

CDAAR... 12

CDADR... 12

CDAR ... 12

CDDAR... 12

CDDDDR .. 12

CDDDR... 12

CDDR ... 12

CDR .. 11, 12

ceiling .. 16

CEILING... 16

CHAR-INT ... 15

CHECKEQUAL 32

circular list .. 14

cleanup form ... 42

CLEAR-FUNCTION-PROFILES 50, 51

CLEAR-MEMO-FUNCTION 32

CLOCK ... 34

close stream ... 36

CLOSE-SOCKET 41

CLOSESTREAM 36, 39

closure ... 22, 24

CLRHASH .. 20

code pattern ... 54

code search .. 54

code verification.. 54

CommonLisp tutorial 5

COMPARE ... 17

CONCAT .. 15

CONCATVECTOR 19

COND ... 26, 27

conditional break points 47

conditional tracing 48

connection ... 40

CONS .. 12

CONSP .. 12

CONSTANTP ... 9

control structures 21, 28

copy with APPEND 11

COPY-ARRAY... 19

COPY-TREE... 12

COS ... 16

cosine .. 16

cross referencing functions, CALLING 54

cross referencing functions, CALLS......... 54

cross-referencing 52

CTRL-C 34, 40, 41, 43, 44

database image .. 4, 5

database image size 32

datatype ... 6, 33

datatype ADJARRAY 18

datatype ARRAY 18

datatype BTREE 20

datatype CLOSURE 22

datatype DATE ... 35

datatype HASHTAB 19

datatype INTEGER 16

datatype LIST.. 11

datatype REAL.. 16

datatype SOCKET 36

datatype STREAM 36, 38

datatype STRING...................................... 15

datatype SYMBOL 6

datatype TEXTSTREAM.................... 36, 39

datatype TIME .. 35

datatype TIMEVAL 35

date values ... 35

DATE-DAY .. 36

DATE-MONTH .. 36

DATEP .. 36

DATE-TO-TIMEVAL 35

DATE-YEAR .. 36

debug mode 42, 43, 44, 45, 54

DEBUGGING 44, 51

debugging macros 29

DECLARE .. 32

DEFC .. 7, 8

DEFGLOBAL ... 8, 9

DEFMACRO .. 7, 30

DEFSTRUCT .. 31

DEFUN ... 7

DEFVAR... 8, 9

DELETE ... 14

DELETE-FILE .. 38

destructive CONS 14

destructive list concatenation 14

destructive list element removal 14

 58

destructive list manipulation 14

destructive list merge 14

destructive reverse 14

DMERGE .. 14

DO ... 27

DO* ... 27

DOC .. 54

documentation 52, 54

DOLIST .. 27

DOTIMES ... 28

double precision .. 16

DOUNITERRUPTED......................... 43, 44

DRIBBLE ... 36

DUMPSTACK 46, 51

dynamic argument list 22

dynamic expressions 23

dynamic scoping ... 8

EIGHTH .. 12

ELT ... 19

Emacs .. 52

EQ ... 17

EQUAL ... 17

ERRCOND-ARG 43, 44

ERRCOND-MSG 43, 44

ERRCOND-NUMBER 43, 44

ERROR ... 43, 44

error condition ... 43

error message .. 42

error number.. 42

error signal .. 42

ERROR? ... 43, 44

escape character 15, 37

EVAL .. 23, 24

EVALLOOP ... 32

EVENP .. 17

EVERY ... 25

EXIT ... 32

EXP ... 16

explicit break point 46

EXPLODE .. 10, 15

exponent .. 16

EXPT... 16

external Lisp function 7

EXTFNP ... 7

F/L ... 24

false ... 6, 17

FAULTEVAL 42, 44

FIFTH ... 12

file position ... 53, 54

file streams .. 36, 38

FILE-EXISTS-P .. 38

FILE-LENGTH ... 38

finding functions 52

finding source code 53

FIRST .. 12

FIRSTN ... 12

FLET ... 7

floating point numbers 16

FLOOR ... 16

FLUSH .. 36, 40

FORMAT .. 37

FORMATL ... 37

FOURTH... 12

FP .. 53, 54

FRAMENO ... 44

FRAND ... 16

free variables ... 22

FUNCALL .. 22, 24

FUNCTION .. 22, 24

function cell .. 6

function definition 6

function statistics 50

function type ... 7

functional arguments 21

functions excluded from sampling 49

garbage collection 4, 10, 52

GENSYM .. 10

GET ... 10

GET-BTREE ... 21

GETD .. 7

GETF... 12

GETHASH .. 19, 20

GETHOSTNAME..................................... 40

GETTIMEOFDAY 35

global value ... 6

global variable ... 9

GO ... 10

GREP .. 54

HARDRESET 43, 44

hash table keys .. 19

HASH-BUCKET-FIRSTVAL 20

HASH-BUCKETS 20

 59

HASH-TABLE-COUNT 20

HELP... 46, 51

higher order functions 21

hooks ... 33

IDENTITY .. 32

IF 26, 27

image expansion.................................. 32, 51

IMAGE-EXPANSION 51

IMAGESIZE ... 32

IN .. 12

indicator .. 11

INT-CHAR ... 15

INTEGERP ... 16

INTERSECTION 12

INTERSECTIONL 12

ISOME .. 25

iteration ... 24

keyword... 11

KEYWORDP .. 11

KEYWORD-TO-ATOM 11

KWOTE .. 30

KWOTED ... 30

LAMBDA ... 7

lambda expression 22, 24

LAMBDA function 6

LAMBDAP ... 8

LAST... 12

LDIFF ... 12

LENGTH....................................... 12, 15, 19

LET ... 8, 9

LET* ... 9

lexical environment 46

Lisp function defined in C 7

Lisp macro .. 7

list .. 11

LIST .. 12

LIST* .. 12

LISTP .. 12

LISTTOARRAY 19

LOAD ... 38

LOC... 51

local variables ... 8, 9

location .. 33

LOG .. 16

Log standard input and output 36

Log top loop .. 36

Logging ... 36, 37

LOOP .. 28

lower case.. 15

macro... 7, 30

macro expansion 30, 31

MACROEXPAND 31

MACRO-FUNCTION 30

macros ... 28

MAKE_ARRAY 18

MAKE_BTREE .. 21

MAKE-ARRAY 18, 19

MAKE-BTREE ... 21

MAKE-HASH-TABLE 19, 20

MAKETEXTSTREAM 39

map function ... 24

MAP-BTREE .. 21

MAPC ... 24, 25

MAPCAN ... 25

MAPCAR .. 24, 25

MAPFILTER .. 25

MAPHASH ... 19, 20

MAPL ... 25

MATCHING ... 54

MAX ... 16

MEMBER ... 12

MEMO-FUNCTION................................. 32

memory corruption.................................... 51

MEMQ .. 12

MERGE... 12

MIN ... 16

MINUS .. 16

MINUSP ... 16

MKDATE ... 36

MKLIST .. 12

MKSTRING .. 6, 15

MKSYMBOL ... 11

MKTIME .. 35

MKTIMEVAL .. 35

MOD ... 16

MOVD .. 8

Move down the stack 47

name server ... 41

NATOM .. 12

natural logarithm 16

NCONC... 14

NCONC1... 14

 60

NEQ .. 18

nick names .. 41

NIL .. 6, 17

NINTH .. 12

NOBIND ... 10

non-blocking messages 42

non-local returns 28

NOT .. 18

NOTANY .. 25

NREVERSE .. 14

NTH .. 13

NTHCDR .. 13

NULL .. 13, 18

NUMBERP ... 16

numeric values .. 16

ODDP .. 18

open stream ... 36

OPEN-SOCKET 40

OPENSTREAM .. 38

OR ... 18

PACK .. 11

PACKLIST ... 11

PAIR ... 13

PAIRLIS ... 13

parameters ... 46

peer .. 41

pending data .. 41

percentage spent in function 49

performance profiling 48

PLUSP... 16

point-to-point communication 40

POLL-SOCKET .. 41

POP ... 13

PP .. 38, 53

PPF .. 38

PPS .. 37

pretty-print .. 29, 37

Pretty-print .. 38

PRIN1 ... 37

PRINC ... 37

PRINC_CHARCODE 37

PRINT ... 36, 37, 39

print name ... 6

PRINTFRAME ... 51

PRINT-FUNCTION-PROFILES 50, 51

PRINTL... 39

PRINTSTAT ... 51

PROFILE .. 49, 51

PROFILE-FUNCTIONS..................... 50, 51

PROG .. 10

PROG1 .. 26

PROG2 .. 26

PROG-LET ... 9

PROG-LET* ... 10

PROGN ... 26

PROGNIFY... 31

property indicator 11

property list 6, 7, 10, 11, 12

property value ... 10

PSETQ .. 10

PUSH .. 13

PUSH-VECTOR 19

PUT ... 11

PUT-BTREE ... 21

PUTF ... 13

PUTHASH .. 20

QUIT ... 33

QUOTE ... 10, 22, 24

raising error ... 43

RANDOM ... 16

RANDOMINIT ... 16

READ .. 36, 37, 39

READ-BYTES .. 37

READ-CHARCODE 37

READ-LINE ... 37

READ-TOKEN ... 37

RECONS ... 13

recursive functions 24

Redirect standard output 37

REDIRECT-BASIC-STDOUT 37

REFCNT ... 51

reference counter 51

REGISTER-AMOS................................... 41

REGISTER-INIT-FORM 33

REGISTER-SHUTDOWN-FORM........... 34

regression testing 32

regular expression 15

relative time values 34, 35

REMHASH ... 20

remote evaluation 41

REMOTE-EVAL 42

REMOVE .. 13

 61

remove break point 47

REMPROP .. 11

RESET .. 42, 43, 44

reset Lisp 42, 45, 47

reset point .. 42

RESETVAR .. 10

REST ... 13

RETURN... 28

REVERSE ... 13

rewrite rule .. 28

rewrite rules .. 7

ROLLOUT 5, 33, 34

ROUND .. 16

RPLACA ... 14

RPLACD ... 14

RPTQ .. 28

RUN-SERVER ... 41

samples .. 49

sampling frequency 49

scope ... 45

search code .. 52

SECOND... 13

SELECTQ ... 27

SEND-FORM ... 42

sequences .. 18

SET ... 10

SETA... 19

SETDEMON ... 51

SET-DIFFERENCE 13

SETF 11, 14, 19, 20, 21, 31, 33

SETF macro .. 33

SETFMETHOD .. 33

SETQ... 8, 10

SET-TIMER .. 34

SEVENTH .. 13

side effects .. 29

SIN .. 17

sinus .. 17

SIXTH ... 13

SLEEP ... 34

SMASH ... 14

socket stream ... 36

SOCKET-PORT 40

sockets ... 39

SOME ... 25

SORT .. 13

sorting lists .. 13

source code.. 53

SPACES .. 38

special forms ... 7

special variable.. 8, 9

SPECIAL-VARIABLE-P 10

SQRT .. 17

stack overflow 33, 44

STACKSIZE ... 33

standard input .. 38

standard output .. 38

START-PROFILE 49, 51

statistical profiler 48, 49

STOP-PROFILE 49, 51

storage leaks .. 51, 52

storage manager .. 36

storage usage ... 51

STORAGESTAT 51

STORAGE-USED 51

streams .. 36

string delimiter .. 37

STRING< .. 15

STRING= .. 15

STRING-DOWNCASE 15

STRING-LEFT-TRIM 15

STRING-LIKE .. 15

STRING-LIKE-I 15

STRINGP .. 15

STRING-POS ... 15

STRING-RIGHT-TRIM 15

STRING-TRIM ... 15

STRING-UPCASE 15

structures ... 31

SUBLIS ... 13

SUBPAIR .. 13

SUBSET .. 25

SUBSETP ... 13

SUBST .. 13

SUBSTRING .. 15

SWAP ... 19

SXHASH... 20

SYMBOL-FUNCTION 6, 8

SYMBOLP .. 11

SYMBOL-PLIST 11

symbols ... 6

SYMBOL-SETFUNCTION 7, 8

 62

SYMBOL-VALUE 10

syntactic sugar ... 28

T, global Lisp variable 17

TAN .. 17

tangent ... 17

TCP/IP... 40

TENTH ... 13

TERPRI ... 38

text streams ... 39

TEXTSTREAMPOS 39

TEXTSTREAMSTRING 39

THIRD .. 13

THROW .. 28, 43

TIME ... 52

time functions.. 34

time points ... 35

TIME-HOUR .. 35

TIME-MINUTE .. 35

TIMEP... 35

timer function .. 34

TIME-SECOND 35

TIMEVALP .. 35

TIMEVAL-SEC .. 35

TIMEVAL-TO-DATE 35

TIMEVAL-USEC 35

TRACE ... 48, 52

TRACEALL .. 52

transform Lisp programs 28

TRAPDEALLOC 52

true .. 6, 17

truth value ... 6

type name .. 6

type reader ... 39

type tag .. 6

TYPENAME ... 6, 33

TYPE-READER 39

UNBREAK ... 47, 52

undeclared global variables 8

undefined functions 54

undefined variables 54

UNFUNCTION... 31

UNION .. 13

UNIONL ... 13

UNIQUE ... 13

UNLESS ... 27

UNPROFILE-FUNCTIONS 50, 52

UNREAD-CHARCODE........................... 38

UNTRACE .. 48

UNWIND-PROTECT 28, 42, 44

UNWRAP-FN ... 33

upper case.. 15

USING .. 54

VAG .. 52

variable .. 8

variable arity ... 22

variable arity external Lisp functions 7

variable number of arguments 7

VECTOR... 19

VERIFY-ALL ... 54

VIRGINFN ... 52

WHEN... 27

WHILE .. 28

WITH-OPEN-FILE............................. 38, 39

WITH-TEXTSTREAM 39

wrapping profiler 49, 50

XEmacs ... 52

ZEROP .. 17

