
Örebro University
School of Science and Technology
Thomas Padron-McCarthy (thomas.padron-mccarthy@oru.se)

Exam for

Programmering grundkurs and Programmering C

for D1 and others, including the distance learning course

Thursday, August 22, 2013

Valid as exam for:
DT1029 Datateknik A, Programmering grundkurs, provkod 0100
DT1030 Datateknik A, Tillämpad datavetenskap, provkod 0410
DT1006 Datateknik A, Programmering C, distans, provkod 0100
DT1016 Datateknik A, Programmering grundkurs, provkod 0100
DT1007 Datateknik A, Tillämpad datavetenskap, provkod 0410

(English version. There is also a Swedish version of this exam.)

Aids: No aids.

Score requirements: Maximum score is 40.
To pass (the grade 3 or G) 20 points are needed.

Results and
solutions:

Notified by email or on the course home page, http://basen.oru.se
/kurser/c/2012-2013-p2/, no later than Thursday, September 12,
2013.

Return of exams: After the results have been announced, exams can be retrieved
from the university's central exam retrieval office.

Responsible teacher
and on-call:

Thomas Padron-McCarthy, telephone 070-73 47 013.

Write clearly. Solutions that can't be read can't give any points. Vague and ambiguous
wording will be misinterpreted.
Write the personal exam code on each sheet submitted. Do not write your name or
person number on the sheets.
Write only on one side of the paper. Do not use red writing.
Assumptions in addition to those in the problems must be stated.
You can write explanations of your reasoning. Even an answer that is wrong may give
credit, if there is an explanation that shows that the main ideas were right.

LYCKA TILL!

1 of 7

Precedence and associativity of operators in C

The main operators:

Priority Category Operator Associativity

Highest Unary postfix operators (), [], ->, ., ++, -- left

Unary prefix operators !, ++, --, +, -, *, &, sizeof, (type) right

Multiplication etc *, /, % left

Addition etc +, - left

Comparisons <, <=, >=, > left

Equality comparisons ==, != left

Logical AND && left

Logical OR || left

Lowest Assignment =, +=, -=, *=, /=, %= right

2 of 7

Some useful library functions

stdlib.h

 int rand(void);
 void srand(unsigned int seed);
 void *malloc(size_t size);
 void *realloc(void *ptr, size_t size);
 void free(void *ptr);
 void exit(int status);
 void qsort(void *base, size_t nmemb, size_t size,
 int(*compar)(const void *, const void *));

stdio.h

 FILE *fopen(const char *path, const char *mode);
 int fclose(FILE *stream);
 int getc(FILE *stream);
 int getchar(void);
 int ungetc(int c, FILE *stream);
 char *fgets(char *s, int size, FILE *stream);
 char *gets(char *s);
 int putc(int c, FILE *stream);
 int printf(const char *format, ...);
 int fprintf(FILE *stream, const char *format, ...);
 int sprintf(char *str, const char *format, ...);
 int snprintf(char *str, size_t size, const char *format, ...);
 int scanf(const char *format, ...);
 int fscanf(FILE *stream, const char *format, ...);
 int sscanf(const char *str, const char *format, ...);
 size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream);
 size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream);

string.h

 size_t strlen(const char *s);
 char *strcpy(char *dest, const char *src);
 char *strncpy(char *dest, const char *src, size_t n);
 int strcmp(const char *s1, const char *s2);
 int strncmp(const char *s1, const char *s2, size_t n);
 char *strcat(char *dest, const char *src);
 char *strncat(char *dest, const char *src, size_t n);
 char *strstr(const char *haystack, const char *needle);
 void *memmove(void *dest, const void *src, size_t n);

ctype.h

 int isalnum(int c);
 int isalpha(int c);
 int isblank(int c);
 int isdigit(int c);
 int islower(int c);
 int isprint(int c);
 int ispunct(int c);
 int isspace(int c);
 int isupper(int c);

3 of 7

Task 1 (1 p)

What are the values of the following expressions in C?

a) 4 * 3 − 2 + 1

b) 4 − 3*2 + 1

c) 4 / 3 − 4 / 2

Task 2 (3 p)

What is printed when the following C program is executed?

#include <stdio.h>

int g(int x, int y) {
 int i, a, b, c;
 a = 17;
 b = 2;
 c = 38;
 for (i = x; i < y; i++)
 printf("*");
 return x + y;
}

int main(void) {
 int a;
 int b, c;
 for (a = 1; a < 3; ++a) {
 b = a + 1;
 c = g(a, b);
 printf("a = %d, b = %d, c = %d\n", a, b, c);
 }
 return 0;
}

Task 3 (3 p)

Write a complete C program (with #include and all else that is needed) that repeatedly
reads three integers, and prints their average value (with decimals). The program should
read three integers until the user enters three numbers that are all equal to zero.

For this and all other tasks on the exam:
Typically, error handling is a large part of a program. For instance,
what should happen if the user writes Donald when she really
should enter a number? Here, however, no error handling is needed,
unless explicitly required in the task.

For this and all other tasks on the exam:
One can ignore details that are only needed when developing
console application in Visual Studio, such as weird character codes
for ÅÄÖ, and that the window with program disappears when the
program ends.

4 of 7

Scenario

Here is a record type, struct Triangle, which we will use to store data about triangles:

struct Triangle {
 double a, b, c;
};

a, b and c are the lengths of the sides of the triangle. The sides can be stored in any order,
so there is for example no guarantee that the triangle's longest side is anyone specific of a, b
or c. All lengths must be greater than zero.

Task 4 (1 p)

Define a variable of type struct Triangle and initialize it with data for the triangle with sides
3, 4 and 3.5.

Task 5 (2 p)

Write a function called show_triangle, which shows the data of a triangle on the screen. It
should print the triangle data, with appropriate labels, to the standard output. You may select
whether you want the function header to look like this:

void show_triangle(struct Triangle t)

or like this:

void show_triangle(struct Triangle *tp)

Task 6 (3 p)

Write a function called read_triangle, which reads the data of a triangle. The function should
print the appropriate prompts on the standard output, and read data from the standard input
(which is normally connected to the keyboard). You may select whether you want the function
header to look like this:

struct Triangle read_triangle(void)

or like this:

void read_triangle(struct Triangle* tp)

Task 7 (5 p)

We want to create the function min, which returns the length of the shortest side of a
triangle, and the function max, which returns the length of the longest side of a triangle. The
functions should take a triangle (struct Triangle), or a pointer to it, as a parameter.

Write the functions min and max.

5 of 7

Task 8 (2 p)

Write the function scale, which re-scales a triangle by a faktor, which should be specified as
an argument. If you for example send the factor 2, all three sides of the triangle should
become twice as long.

Task 9 (3 p)

Write the function area, which returns the area of a triangle. Calculate the area A using the
following formula:

Task 10 (4 p)

Write a main function that has a local variable of the triangle type, and that does the
following:

read data into the variable using the function read_triangle
prints the triangle using show_triangle
calculates tha area of the triangle using area, and prints it
asks for and lets the user input a scaling factor
applies that scaling factor on the triangle using the function scale
prints the re-scaled triangle using show_triangle
calculates tha area of the re-scaled triangle using area, and prints it

For this and all other tasks on the exam:
If you need to use something from a previous task or sub-task, such
as a data type or a function that was written in the previous task,
you do not have to write the same code again. You may also do the
task even if you have not done that previous task.

Task 11 (3 p)

Write the function max_area, which returns the area of the largest triangle in an array. It
should take an array of triangles as argument, and an integer that indicates the number of
triangles in the array, and it will then return the area of the triangle in the array that has the
greatest area. Use the function area to calculate the areas.

Task 12 (3 p)

We want to test the function max_area. Write a main function that calls max_area with
suitable data, and verifies that it gives the expected response. If the function gives an
incorrect answer, a clear error message should be printed. Otherwise there is no need to
print anything.

For realistic testing we would need more than just one call, but here we only do one. Thus
there is only a single test case. Try to make that test case as good as possible!

6 of 7

Task 13 (3 p)

Write a C program that reads data about one (yes, just one) triangle from the user, by using
the function read_triangle, and saves it to a file. Decide for yourself whether it should be a
text file or binary file. Write in your solution which you chose!

If the file can not be opened, an error message should be printed, and the program should be
terminated.

Do not forget to specify if you chose a text file or a binary file!

Task 14 (3 p)

Write a C program that reads the file from the task above, and prints the stored triangle by
using the function show_triangle.

If the file can not be opened, an error message should be printed, and the program should be
terminated.

Task 15 (1 p)

What does the following C program write? Explain your answer!

#include <stdio.h>

int main(void) {
 double x = 0.2, y = 6.0, z = 1.2;
 printf("%f\n", x * y);
 printf("%f\n", z);
 if (x * y == z)
 printf("Lika, förstås.\n");
 else
 printf("Va? Inte lika!\n");
 return 0;
}

7 of 7

